Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Information Network | PRODUCT CODE: 1266894

Cover Image

PUBLISHER: Information Network | PRODUCT CODE: 1266894

The GaAs IC Market

PUBLISHED:
PAGES:
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF by E-mail
USD 4995

Add to Cart

The biggest enabler of the mobile data increase and the most important driver of the GaAs RF IC market is the handset segment. Much of the content of a handset is silicon-based, but power amplifiers (PAs) and switches in the front-end of the phone use GaAs devices. This report investigates the technology trends, applications, and market developments of GaAs ICs. U.S., Japanese, and European applications such as telecom, computers, defense, consumers, are reviewed. This report will provide the reader with an in-depth understanding of the technological and market factors determining the evolution of GaAs ICs.

Every cell phone contains Power Amplifiers (PA), which enables the handset to transmit voice and data back to the base station tower to route a call to another phone number or Internet address. PAs, the most critical radio frequency component in the phone are currently dominated by circuits made with Gallium Arsenide (GaAs).

Table of Contents

Chapter 1. Introduction

Chapter 2. Executive Summary

  • 2.1. Summary of Major Issues
  • 2.2. Summary of Market Forecast

Chapter 3. Technology Issues

  • 3.1. GaAs Devices
    • 3.1.1. FETs
    • 3.1.2. HEMTs
    • 3.1.3. HBT
  • 3.2. Comparison of Logic Structures
    • 3.2.1. Buffered FET Logic
    • 3.2.2. FET Logic
    • 3.2.3. Capacitively Enhanced Logic
    • 3.2.4. Direct-Coupled FET Logic
    • 3.2.5. Source-Coupled FET Logic
  • 3.3. Material Issues
    • 3.3.1. Wafer Production
    • 3.3.2. Etch Pit Densities
  • 3.4. Equipment
    • 3.4.1. Implanters
    • 3.4.2. Lithography
    • 3.4.3. Etching
    • 3.4.4. Deposition
    • 3.4.5. Rapid Thermal Processing
  • 3.5. Packaging
    • 3.5.1. Package Types
    • 3.5.2. Bonding
  • 3.6. Testing
  • 3.7. Design

Chapter 4. Applications for GaAs ICs

  • 4.1. Introduction
    • 4.1.1. The Trend Toward Higher Frequencies
    • 4.1.2. Transition from Analog to Digital Modulation
    • 4.1.3. Discrete Components and Silicon-Based ICs
  • 4.2. Markets
    • 4.2.1. Telecommunications Systems
    • 4.2.2. Television Systems
    • 4.2.3. Computing
    • 4.2.4. Data Communications
    • 4.2.5. Automotive
    • 4.2.6. Automated Test Equipment
    • 4.2.7. Military

Chapter 5. IC Supplier and End-User Issues

  • 5.1. Introduction
  • 5.2. Competing Against Silicon
  • 5.3. Competing Against The Japanese
  • 5.4. Taiwan's Market Momentum
  • 5.5. Korea's Market Momentum
  • 5.6. Wafer Sizes
  • 5.7. Competing Against SiGe
    • 5.7.1. Introduction
    • 5.7.2. Technology
      • 5.7.2.1. Strained Silicon
      • 5.7.2.2. Device Manufacturing
    • 5.7.3. Applications
      • 5.7.3.1. Wireless LAN
      • 5.7.3.2. WiMAX
      • 5.7.3.3. Bluetooth
      • 5.7.3.4. Cellular
      • 5.7.3.5. GPS

Chapter 6. Market Forecast

  • 6.1. Driving Forces
  • 6.2. Market Forecast Assumptions
  • 6.3. GaAs IC Market Forecast
  • 6.4. SiGe IC Market Forecast
  • 6.5. End Application Market

Chapter 7. Profile of GaAs IC Manufacturers

List of Tables

  • 5.1. Cost Comparison for GaAs Structures
  • 5.2. A Comparison of SiGe BiCMOS, RF CMOS, and InGaP/GaAs
  • 6.1. Worldwide Merchant GaAs IC Market Forecast By Device Type
  • 6.2. Worldwide Merchant Market Forecast By Geographical Region
  • 6.3. Worldwide Merchant Market Forecast By Application
  • 6.4. Market Shares of Merchant Participants - 2013

List of Figures

  • 3.1. Schematic of GaAs MESFET
  • 3.2. Schematic of GaAs HEMT Device
  • 3.3. Schematic of GaAs HBT Device
  • 3.4. Schematic of GaAs HBT Device
  • 3.5. Symbolic Representations of Various GaAs Transistor Type
  • 3.6. Schematic of BFL Logic Gate
  • 3.7. Schematic of FETL Logic Gate
  • 3.8. Schematic of CEL Logic Gate
  • 3.9. Schematic of DCFL Logic Gate
  • 3.10. Schematic of SCFL Logic Gate
  • 3.11. Full wafer EPD mapping of LEC and VGF wafers
  • 3.12. Mesoscopic EL2 mapping of LEC and VGF wafers
  • 3.13. pHEMT MMIC Process Flow Chart
  • 3.14. 0.15 Micron 3MI Process Cross Section
  • 3.15. InGaP HBT Process
  • 5.1. Comparison of Die Costs of Si and GaAs
  • 5.2. Strained Silicon Germanium Technology
  • 5.3. Fourth Generation Of Strain Technology
  • 5.4. Performance Versus Germanium Content
  • 5.5. Bulk Versus SOI Strain Method
  • 6.1. Worldwide Merchant GaAs IC Market Forecast
  • 6.2. Worldwide GaAs Merchant Market Forecast By Geographical Region
  • 6.3. Worldwide GaAs Merchant Market Forecast By Application
  • 6.4. Global Handset Market
  • 6.5. Migration Of PA's In Handset Market
  • 6.6. CMOS Replacement Of Bipolar And GaAs
  • 6.7. Worldwide SiGe Market Forecast
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!