Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1297780

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1297780

Global Orthopedic Power Tools Market - 2023-2030

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

The Global Orthopedic Power Tools Market reached US$ 2 billion in 2022 and is projected to witness lucrative growth by reaching up to US$ 3 billion by 2030. The global orthopedic power tools market is expected to exhibit a CAGR of 5.3% during the forecast period 2023-2030. The increasing technological advancements and rising advantages for power tools drive demand for orthopedic power tools market trends.

A surgical power tool is used in bone or bone fragment surgery. It makes it possible to drill, cut, ream, and screw. It is mostly utilized in orthopedic surgery, neurology, traumatology, and ENT surgery in humans and animals. Every stage of orthopedic surgery today uses power instruments, from pulse lavage for wound care to drilling and reaming for inserting intramedullary nails or screws in long bone fractures. Further improvements have been made to these tools to make them lightweight for user convenience.

More frequently, metal alloys that are thinner, lighter, and produce less heat when used repeatedly are being used.

The orthopedic power tools market scope comprises technology such as pneumatic-powered systems, battery-operated systems, electric-powered systems and others, which has increased the orthopedic power tools market share. The Global Market for Orthopedic Power tools is expanding due to factors, including the increasing advances in surgical power tools and their upcoming medical approvals across countries, creating a positive outlook for the orthopedic power tools market growth.

Market Dynamics

Advantages Provided by the Power Tools drive the growth of the orthopedic power tools market.

Surgeons use the majority of surgical power tools. Their main objective is to complete numerous surgeries in a fair amount of time. To treat more patients, they must thus work effectively and affordably. With a device the surgeon can rely on, the patient can concentrate on a more precise placement of the implant that will be inserted without worrying about whether or not the system will malfunction. The simple-to-use surgical power instruments eliminate any delays prior to or during the procedure. The auxiliary users will feel relieved and more confident if the device is prepared quickly and can easily accomplish the task the surgeon wants the motor to carry out during the procedure.

When using high-quality surgical power instruments that can be cleaned automatically, the cleaning staff will have to interact with the equipment for a shorter period of time. Since each orthopedic procedure requires a unique set of surgical power instruments, hospitals with numerous operating rooms and a high volume of daily cases typically prefer more affordable devices. Avoiding high-end, high-investment-grade equipment is seen to be advantageous.

Growing Research and Development for Technological Advancements creates lucrative opportunities for manufacturers.

The variety of robotic systems used in surgery is expanding due to the many systems created in the past ten years to address the shortcomings of manually navigated orthopedic equipment. Two advantages of robotic systems are improved security and decreased iatrogenic injuries.

When used in conjunction with oscillating saws, robotic navigation can considerably reduce the risk of iatrogenic injury compared to freehand methods during total knee arthroplasty. In a different study, robotic-assisted cervical transpedicular screw placement was examined. It was discovered that, compared to non-robotic-guided placement, it had enhanced functional results and reached 98.8% accuracy in Kirschner wire placement.

Compared to fluoroscopy-guided procedures, another study utilizing robotically aided pedicle screw placement likewise discovered improved accuracy in spine surgery. The abovementioned factors show that high research creates opportunities for orthopedic power tools market growth.

Disadvantages of Orthopedic Power Tool which will hamper the growth of the market.

Utilizing power tools has drawbacks, including heat necrosis, drill bit breakage, injury to nearby tissue structures, and over drilling and overwatching. The surgeon using the gadget would benefit from knowing about these occurrences and technologists working to create better and safer medical equipment.

Tissue-selective piezoelectric drills for head and neck surgery and self-stopping drills for neurosurgery are only two examples of the kind of equipment that are in demand and being developed in other disciplines because they are more and more safety-focused.

Vascular, tendon and neurological injuries are examples of iatrogenic injuries in orthopedics that can have serious repercussions; a prior study revealed that 7.3% of vascular wounds in total hip arthroplasty result in mortality. Some strategies, including robotics, cutting-edge drill technology, and instantaneous feedback mechanisms, are being developed to lessen these injuries. Hence these above-mentioned factors are limiting the orthopedic power tools market's growth.

COVID-19 Impact Analysis

The COVID-19 Analysis includes the Pre-COVID Scenario, COVID Scenario, and Post-COVID Scenario in addition to Pricing Dynamics (Including pricing change during and after the pandemic evaluating it with pre-COVID scenarios), Demand-Supply Spectrum (Shift in demand and supply due to trading restrictions, lockdown, and afterward issues), Government Initiatives (Initiatives to reactivate a market, industry, or sector by Government Bodies), and Manufacturers Strategic Initiatives.

Russia-Ukraine War Impact Analysis

The Russia-Ukraine conflict is estimated to have a low impact on the global orthopedic power tools market, owing to the low number of key market players in this region. However, the effect of the import and export of raw materials is expected to have little influence over the global orthopedic power tools market growth over the forecast period.

Segment Analysis

The Global Orthopedic Power Tools Market is segmented based on product type, technology, end user and region.

Battery Operated Systems from the technology segment account for 45.9% of the market share owing to rising novel product launches.

Drills powered by batteries may be used for hardware engineering or orthopedics. Orthopedic battery drills (OBDs) sold commercially are highly expensive. However, hardware/engineering battery drills (HBD or EBD) can provide the same function while offering some extra practical benefits. The "hardware"/engineering battery drill (EBD) is frequently used in orthopedic surgery. Compared to commercial orthopedic battery drills (OBDs), EBDs have a significant advantage.

These EBDs are excellent alternatives to OBD in hospitals when surgical cost is a concern and resources are limited since they are affordable, user-friendly, have numerous capabilities in orthopedic procedures, are locally bought and easily serviced, have minimal maintenance costs, are tough, and are durable. Several advancements, such as a lightweight, comfortable system with the strength required for reconstructive surgeries and the adaptability required for ortho trauma treatments, are what the X Series Power System by Zimmer Biomet is designed to provide.

Geographical Analysis

Due to major players' strong presence and increasing technological advancements, North America accounted for approximately 39.9% of the market share.

Manufacturers have chances to expand their operations in this region because of the rising demand for orthopedic power tools for advancements in North America. The area has many producers and suppliers, and its rapid economic development has raised the industrial production of orthopedic power tools, increasing demand. North America has a large number of producers and suppliers. As a result of the swift economic development of the area, industrial production has increased, fueling the demand of orthopedic power tools.

Rising new product types or applications will drive market growth. Growth is also fueled by rising technological advancements, regulatory approvals, and novel product launches. Researchers are becoming more aware of various treatment approaches for orthopedic disorders, leading to the expansion of the market in this region. These factors shows the dominance of North America.

Competitive Landscape

The major global players in the orthopedic power tools market include: CONMED Corporation, Zimmer Biomet, Stryker Inc, Medtronic, DePuy Synthes (J&J), Integra LifeSciences, Aesculap, Inc (B. Braun), Portescap, Misonix Inc., Brasseler USA and Maxon among others.

Why Purchase the Report?

  • To visualize the Global Orthopedic Power Tools Market segmentation based on product type, technology, end-user and region, and understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous orthopedic power tools market-level data points with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The Global Orthopedic Power Tools Market Report Would Provide Approximately 53 Tables, 54 Figures And 195 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: MD723

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Product Type
  • 3.2. Snippet by Technology
  • 3.3. Snippet by End-User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Prevalence of Minimally Invasive Surgeries
      • 4.1.1.2. Rising Prevalence of Fractures
    • 4.1.2. Restraints
      • 4.1.2.1. Hospital Consolidation and Cost-Containment Pressures
    • 4.1.3. Opportunity
      • 4.1.3.1. Growing Novel Technological Advancements
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's 5 Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Post COVID-19 & Future Scenario
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During the Pandemic
  • 6.5. Manufacturers' Strategic Initiatives
  • 6.6. Conclusion

7. By Product Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product Type
    • 7.1.2. Market Attractiveness Index, By Product Type
  • 7.2. Large bone orthopedic power tools *
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Small bone orthopedic power tools
  • 7.4. High speed orthopedic power tools
  • 7.5. Orthopedic reamers

8. By Technology

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 8.1.2. Market Attractiveness Index, By Technology
  • 8.2. Pneumatic powered systems *
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Battery-operated systems
  • 8.4. Electric powered systems

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Hospitals *
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Orthopedic clinics
  • 9.4. Ambulatory surgical centers
  • 9.5. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product Type
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. The U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product Type
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. The U.K.
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Spain
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product Type
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product Type
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product Type
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Zimmer Biomet *
    • 12.1.1. Company Overview
    • 12.1.2. Product Type Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. CONMED Corporation
  • 12.3. Stryker Inc
  • 12.4. DePuy Synthes (J&J)
  • 12.5. Medtronic
  • 12.6. Misonix Inc
  • 12.7. Aesculap, Inc (B. Braun)
  • 12.8. Portescap
  • 12.9. Brasseler USA
  • 12.10. Maxon

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!