Cover Image
Market Research Report

Towards Being Truly Intelligent: Next Wave of AI Technologies (Wave 1 - Unsupervised Learning)

Published by Frost & Sullivan Product code 940867
Published Content info 26 Pages
Delivery time: 1-2 business days
Back to Top
Towards Being Truly Intelligent: Next Wave of AI Technologies (Wave 1 - Unsupervised Learning)
Published: May 19, 2020 Content info: 26 Pages

An Overview On Emerging Machine Learning/Artificial Intelligence Approach

As industries across the globe pursue digitization across functions, more and more data are being generated and utilized to empower decision making and insight generation. As the volume and complexity of data increases, it is also becoming difficult for traditional machine learning (ML) algorithms to make sense of a large number of variables. The labeling and annotation of such large and complex datasets are highly laborious and time consuming, making ML unscalable.

While most of the current ML-based systems depend largely on supervised ML algorithms, unsupervised learning (UL) systems after years of theoretical and lab research have found applicability in commercial applications and have been at the center of many initiatives in industries such as automotive, finance, and cybersecurity.

In brief, this research service covers the following points:

  • Introduction to Unsupervised Learning
  • Applications of Unsupervised Learning
  • Innovators and Innovations
  • Growth Opportunities
Table of Contents
Product Code: D985

Table of Contents

1.0 Executive Summary

  • 1.1. Research Scope
  • 1.2. Research Methodology

2.0 Unsupervised Learning - Introduction

  • 2.1. Unsupervised Learning Lays the Framework for Truly Automated Machine Learning Where Human Intervention Is Minimal
  • 2.2. Unsupervised Learning Works Accurately with Large Datasets Which Cannot be Labeled Manually
  • 2.3. Clustering of Data into Groups Makes Them More Suitable and Understandable for Further Analysis
  • 2.4. A Variety of Data Clustering Methods Based on Unsupervised Learning can be Used Based on the Type of Dataset and the Objectives
  • 2.5. Dimensionality Reduction Techniques Play a Key Role in Prepping up Large Datasets for Analysis
  • 2.6. Autonomy and Minimal Human Intervention in Unsupervised Learning Systems Create Ambiguity in Output

3.0 Innovations and Companies to Action

  • 3.1. Unsupervised Learning Will Empower a Higher Level of Autonomy Among Self-driving Cars
  • 3.2. Unsupervised Learning can Help NLP Systems Learn More Easily and Rapidly with Unknown Languages and Accents
  • 3.3. Unique Financial Frauds with no Precedent can Be More Accurately Identified with Unsupervised Learning Methods
  • 3.4. Identifying Outliers From Datasets Is a Key Strength of UL Systems, Making Them Fit for Detecting Malicious Behavior
  • 3.5. Cybersecurity is Emerging as a Key Area of Innovation for Unsupervised Learning

4.0 Growth Opportunity

  • 4.1. Pursuit of Greater Degree of Autonomy Among Self-driving Cars Is Facilitating the Adoption of Unsupervised Learning Techniques
  • 4.2. The Accuracy of Artificial Intelligence System Is Highly Dependent on the Quality of Training Data Used to Train Algorithms
  • 4.3. Industry-academia Collaborations can Accelerate the Pace of Commercial Adoption of Unsupervised Learning

5.0 Industry Contacts

  • 5.1. Key Contacts
  • Legal Disclaimer
Back to Top