Cover Image
Market Research Report

Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041

Published by IDTechEx Ltd. Product code 969590
Published Content info 235 Slides
Delivery time: 1-2 business days
Price
Back to Top
Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041
Published: November 10, 2020 Content info: 235 Slides
Description

Title:
Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041
COVID adjusted regional sales, penetration, battery demand and market value forecasts for electric, plug-in hybrid and fuel cell light commercial vehicles 2021-2041. Europe, China, and the US: players, technology, and drivers for electrification.

Astute businesses are recognising that electrifying their light commercial vehicle fleets is not only a successful mechanism by which they can demonstrate their green credentials to their customers, but is also, increasingly, the prudent economic decision.

Whilst there are differing motivations for commercial vehicle electrification in each of the key geographical markets, there are strong drivers in each which are pushing them towards the rapid adoption of electric motors in place of conventional internal combustion engines.

The new, COVID adjusted, IDTechEx forecast report "Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041" provides a detailed twenty-year outlook for the uptake of electric light commercial vehicles across key regions; China, Europe, the US, and the rest of the world.

The report contains market forecasts outlining eLCV sales, penetration, market revenue, and battery demand. This report will be of great value to companies across the automotive industry including OEMs, battery manufactures, electric drivetrain parts and systems suppliers, materials, and research organisations, charging infrastructure developers, government agencies and companies with significant LCV fleets.

IDTechEx Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041 forecast segmentation:

  • By technology: battery electric (BEV), plug-in hybrid (PHEV) and fuel cell electric (FCEV) light commercial vehicles
  • By geography: North America, China, Europe (EU + EFTA) and ROW as well as an aggregate global forecast.
  • 20-year outlook: sales (units), market penetration (%), market revenue ($), and battery demand (GWh).

Also included with the report:

  • 2021-2041 eLCV sales forecasts for each European country with greater than 75,000 LCV units sales p.a. (i.e. Belgium, France, Germany, Italy, Netherlands, Spain, UK) and Norway.

Along with the forecasts, the Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041 report provides a background to the addressable LCV market in each of the key regions; describes the current state of the eLCV market in each of these regions, highlighting the major players; and looks at the distinct drivers that are promoting the growth of electric light commercial vehicles including total cost of ownership considerations.


European Light Commercial Vehicle Sales 2019 Source: IDTechEx Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041, ACEA


The LCV market is uniquely positioned for the rapid uptake of electric vehicles for several reasons, which include:

LCV purchase decisions are commonly made on a total cost of operation (TCO) basis. The significant operational cost saving of electricity, in place of diesel, as a fuel is incorporated into the decision-making process of an LCV purchaser to a much greater degree than is the case for private customers in the electric passenger car market, where upfront cost is more often the determining factor. Where the TCO benefit of an electric vehicle can be demonstrated, it becomes a competitive advantage for operators to run electric vehicles. For smaller vans there is evidence that this is already the case. For larger vans, TCO advantage is dependent on the level of government support through purchase grants.


Cumulative Small Van Cost ($ thousands) Source: IDTechEx Electric, Hybrid & Fuel Cell Light Commercial Vehicles 2021-2041


Fleet managers have a detailed knowledge of the daily duty requirements of their vehicles. As LCV operators understand the daily mileage they require from their vehicles, range anxiety should not be an issue for the LCV market. OEMs must work with their customers, pre-sale, to understand firstly if their vehicle can meet the daily duty demand in the worst case scenario (cold, fully laden, congested traffic, etc.) and further to this, to work with them to optimise the battery size and charging strategy to meet their customers' needs, with the effect of reducing the upfront cost of the vehicle and minimising the weight of the installed battery.

Along with the concerns common to all combustion driven vehicles around fuel efficiency / CO2 emission and the impact of this on the global climate, a further driver for eLCV is the effect of exhaust emissions on local air quality. LCVs are often employed in urban environments as a key element in the logistics chain. There is growing evidence of the detrimental impact that exhaust pollutant emissions, especially NOx and PM, have on local air quality and public health. As a direct result, many large cities are in the process of introducing mechanisms to limit the access of polluting vehicles to city centres. Combustion engine driven vehicles will increasingly have to pay to access low emission zones within cities, vastly increasing their operating costs. Urbanisation and the continued growth of e-commerce is set to increase demand for the delivery of goods, but the tariff on exhaust emissions in congested urban areas will make eLCV the cheapest way to meet the demand.

The total cost of ownership is important to LCV purchasers and will be a driving force for uptake, however in the short term IDTechEx expect there to be a period of progressively larger pilot projects, conducted by commercial fleet operators to establish that eLCVs meet the businesses' operational requirements. This period of validation will be necessary for fleet operators to determine that the vehicle range, load volume capacity, payload weight and reliability in real-world operation are sufficient to replace the existing diesel fleet. Once this has been shown, the widespread replacement of ageing diesel LCVs with eLCV will begin.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Imminent Boom in eLCVs
  • 1.2. Electric LCV Unit Sales BEV, PHEV, FCEV 2017-2041
  • 1.3. Electric LCVs and Covid-19
  • 1.4. Plug-in hybrid LCVs
  • 1.5. Global Forecast Takeaways
  • 1.6. Forecast Takeaways
  • 1.7. eLCV (BEV, PHEV, FCEV) sales by region 2017-2041 (000s units)
  • 1.8. eLCV (BEV, PHEV, FCEV) battery forecast by region 2017-2041 (GWh)
  • 1.9. eLCV market revenue forecast by region 2017-2041 ($US billion)

2. INTRODUCTION

  • 2.1. Electric Vehicle Terms
  • 2.2. Electric Vehicles: Basic Principle
  • 2.3. Electric Vehicles: Typical Specs
  • 2.4. LCV Definition
  • 2.5. Different segments of goods transportation by land
  • 2.6. Types of popular on-road truck
  • 2.7. LCV fleet description by region
  • 2.8. The Core Driver: Climate Change
  • 2.9. Global CO2 emission from transport
  • 2.10. CO2 emissions from the LCV sector
  • 2.11. CO2 emission from the LCV sector
  • 2.12. Urban air quality
  • 2.13. Urban air quality
  • 2.14. Urban air quality
  • 2.15. Pollution in India
  • 2.16. Road transport the main source of urban NOx
  • 2.17. Fossil Fuel Bans: Explained
  • 2.18. Official or Legislated Fossil Fuel Bans (National)
  • 2.19. Unofficial, Drafted or Proposed Fossil Fuel Bans (National)
  • 2.20. Fossil Fuel Bans (Cities)
  • 2.21. The worldwide freight transport industry
  • 2.22. Road Freight Market
  • 2.23. Projected increase in global road freight activity
  • 2.24. The rise of e-commerce: increased freight demand
  • 2.25. Fuel / emissions regulation for new LCVs
  • 2.26. GHG emission from LCVs
  • 2.27. Europe Emissions Standards: LCVs
  • 2.28. Drivers for LCV Electrification
  • 2.29. eLCV Market Drivers
  • 2.30. Considerations for eLCV adoption
  • 2.31. Do eLCVs offer sufficient range?
  • 2.32. Do eLCVs offer sufficient range?
  • 2.33. Do eLCVs offer sufficient range?
  • 2.34. Do eLCVs offer sufficient range?

3. IDTECHEX TCO CALCULATIONS

  • 3.1. Total Cost of Ownership
  • 3.2. Environmental goodwill insufficient for uptake of eLCV
  • 3.3. TCO considerations for eLCV
  • 3.4. Overcoming barriers for low emission technologies
  • 3.5. Example: TCO for eLCV (Renault Kangoo)
  • 3.6. Example: TCO for eLCV (Nissan e-NV200)
  • 3.7. Timeline for TCO parity between diesel and eLCV
  • 3.8. Electric and diesel LCV cost parity
  • 3.9. IDTechEx Battery-Electric Van TCO Analysis
  • 3.10. TCO: Small Vans
  • 3.11. TCO Analysis Assumptions: Small Van
  • 3.12. Small eVan Break-Even Point
  • 3.13. Small eVan Break-Even: Purchase Grant
  • 3.14. Small eVan Break-Even: Daily Duty Cycle Range
  • 3.15. TCO: Medium Vans
  • 3.16. TCO Analysis Assumptions: Medium Van
  • 3.17. Medium eVan Break-Even Without Purchase Grant
  • 3.18. Medium eVan Break-Even: Purchase Grant
  • 3.19. Medium eVan Break-Even: Daily Duty Cycle Range
  • 3.20. TCO: Large Vans
  • 3.21. TCO Analysis Assumptions: Large Van
  • 3.22. Large eVan Break-Even Without Purchase Grant
  • 3.23. Large eVan Break-Even: Purchase Grant
  • 3.24. Large eVan Break-Even: Daily Duty Cycle Range
  • 3.25. TCO Summary: Small, Medium and Large Electric Vans
  • 3.26. Strengthening TCO advantage for eVans

4. EUROPE

  • 4.1. Europe: LCV sales 2019
  • 4.2. European market for LCVs
  • 4.3. European in-use LCV fleet and new registrations
  • 4.4. New registrations in Europe's 8 largest LCV fleets
  • 4.5. 2018 European eLCV Sales
  • 4.6. 2019 European eLCV Sales
  • 4.7. Increasing eLCV sales in Europe
  • 4.8. Market outlook: national and local policy
  • 4.9. European eLCV market leaders
  • 4.10. Popular e-LCVs in Europe
  • 4.11. StreetScooter Timeline
  • 4.12. StreetScooter: End of the Road
  • 4.13. 2019 Rise of the large eLCV?
  • 4.14. Movers 2019: Daimler enter the fray
  • 4.15. Vastly increasing eVan model choice
  • 4.16. New e-LCV models
  • 4.17. Ford Transit Custom PHEV
  • 4.18. Available PHEV LCVs
  • 4.19. Plug-in hybrid LCVs
  • 4.20. 2020 Large Orders for eLCV
  • 4.21. A New Arrival
  • 4.22. Arrival's Business Model
  • 4.23. Specifications of eLCVs available in Europe
  • 4.24. e-LCVs in Europe: compact utility vehicles
  • 4.25. UK Electric Fleets Coalition

5. ELCVS IN CHINA

  • 5.1. Chinese Market for LCVs
  • 5.2. China: Electric Special-Purpose Vehicle Sales 2018
  • 5.3. China: Commercial Vehicle Sales 2019
  • 5.4. China: SPV Production 2018 Top 15 Manufacturers
  • 5.5. China: Electric SPV Production 2019
  • 5.6. China NEV eLCV production / sales fall in 2019
  • 5.7. Best selling new energy LCVs in China
  • 5.8. Best selling new energy LCVs in China
  • 5.9. Popular Larger Electric LCVs in China
  • 5.10. China: Main Battery Suppliers to Chinese eLCVs
  • 5.11. Battery suppliers to the Chinese NEV SPV Market
  • 5.12. China: Main Motor Suppliers to Chinese eLCVs
  • 5.13. Drivers for the electrification of LCVs in China
  • 5.14. City Targets
  • 5.15. Market Outlook: China eLCVs
  • 5.16. China to support e-SPV sales in 2nd and 3rd Tier Cities
  • 5.17. BAIC EV5 with UV disinfection to counter covid-19

6. ELCVS IN THE US

  • 6.1. US: Commercial LCV Sales 2018
  • 6.2. US: Commercial LCV Sales 2019
  • 6.3. Growth in US commercial LCV sales
  • 6.4. US LCV Sales by OEM
  • 6.5. California's Advanced Clean Trucks Regulation
  • 6.6. CARB Voucher Incentive Project
  • 6.7. Lightning Systems - Electric Ford Transit Cargo LCV
  • 6.8. Workhorse C-Series Electric Delivery Trucks
  • 6.9. Rivian / Amazon electric delivery LCV
  • 6.10. Rivian: Three sizes of delivery LCV for Amazon
  • 6.11. Bollinger Motors Deliver-E All-Electric Concept LCV
  • 6.12. Karma Automotive E-Flex Utility LCV
  • 6.13. Ford: Finally an OEM offering an eVan option in the US
  • 6.14. General Motors All-Electric Delivery LCV BV1
  • 6.15. Popular Electric LCVs in the US
  • 6.16. eLCV Demand: Corporate Electric Vehicle Alliance
  • 6.17. Business to drive electrification of LCV fleet in US?

7. ELCVS IN THE ROW

  • 7.1. Toyota PROACE
  • 7.2. Yamato / DHL StreetScooter
  • 7.3. Mitsubishi MiniCab MiEV LCV
  • 7.4. Hyundai Porter EV and Kia Bongo EV
  • 7.5. Tata Motors Ace
  • 7.6. Mahindra eSupro Cargo LCV
  • 7.7. Mahindra and REE eLCV Partnership
  • 7.8. Maruti Suzuki India Eeco Charge Concept
  • 7.9. Croyance Electro 1.T and Electro 2.T
  • 7.10. SEA E4V Delivery LCV

8. TECHNOLOGIES

  • 8.1. Li-ion Batteries
    • 8.1.1. What is a Li-ion battery?
    • 8.1.2. The Battery Trilemma
    • 8.1.3. Electrochemistry Definitions
    • 8.1.4. Lithium-based Battery Family Tree
    • 8.1.5. Battery Wish List
    • 8.1.6. More Than One Type of Li-ion battery
    • 8.1.7. NMC: from 111 to 811
    • 8.1.8. Cobalt: Price Volatility
    • 8.1.9. Cathode Performance Comparison
    • 8.1.10. 811 Commercialisation Examples
    • 8.1.11. Commercial Anodes: Graphite
    • 8.1.12. The Promise of Silicon-based Anodes
    • 8.1.13. The Reality of Silicon
    • 8.1.14. Silicon: Incremental Steps
    • 8.1.15. What is in a Cell?
    • 8.1.16. Inactive Materials Negatively Affect Energy Density
    • 8.1.17. Commercial Battery Packaging Technologies
    • 8.1.18. Comparison of Commercial Cell Geometries
    • 8.1.19. What is NCMA?
    • 8.1.20. Lithium-based Batteries Beyond Li-ion
    • 8.1.21. Li-ion Chemistry Snapshot: 2020, 2025, 2030
  • 8.2. Electric Traction Motors
    • 8.2.1. Electric Traction Motors: Introduction
    • 8.2.2. Electric Traction Motors: Introduction
    • 8.2.3. Brushless DC Motors (BLDC): Working Principle
    • 8.2.4. BLDC Motors: Advantages, Disadvantages
    • 8.2.5. BLDC Motors: Benchmarking Scores
    • 8.2.6. Permanent Magnet Synchronous Motors (PMSM): Working Principle
    • 8.2.7. PMSM: Advantages, Disadvantages
    • 8.2.8. PMSM: Benchmarking Scores
    • 8.2.9. Wound Rotor Synchronous Motor (WRSM): Working Principle
    • 8.2.10. WRSM Motors: Benchmarking Scores
    • 8.2.11. WRSM: Advantages, Disadvantages
    • 8.2.12. AC Induction Motors (ACIM): Working Principle
    • 8.2.13. AC Induction Motor (ACIM)
    • 8.2.14. AC Induction Motors: Benchmarking Scores
    • 8.2.15. AC Induction Motor: Advantages, Disadvantages
    • 8.2.16. Reluctance Motors
    • 8.2.17. Reluctance Motor: Working Principle
    • 8.2.18. Switched Reluctance Motor (SRM)
    • 8.2.19. Switched Reluctance Motors: Benchmarking Scores
    • 8.2.20. Permanent Magnet Assisted Reluctance (PMAR)
    • 8.2.21. PMAR Motors: Benchmarking Scores
  • 8.3. Electric Traction Motors: Summary and Benchmarking Results
    • 8.3.1. Comparison of Traction Motor Construction and Merits
    • 8.3.2. Benchmarking Electric Traction Motors
    • 8.3.3. Motor Efficiency Comparison
    • 8.3.4. Magnet Price Increase?
    • 8.3.5. Multiple Motors: Explained
    • 8.3.6. LCVs & Trucks
    • 8.3.7. Motors per Vehicle and kWp per Vehicle Assumptions
    • 8.3.8. Brushed DC: Small Presence in LCVs
    • 8.3.9. LCVs and Trucks Motor Outlook
  • 8.4. Fuel Cells
    • 8.4.1. Proton Exchange Membrane Fuel Cells
    • 8.4.2. Fuel Cell Inefficiency and Cooling Methods
    • 8.4.3. Challenges for Fuel Cells
    • 8.4.4. Infrastructure Costs
    • 8.4.5. Fuel Cell Charging Infrastructure in the US
    • 8.4.6. Fuel Cost per Mile: FCEV, BEV, internal-combustion
    • 8.4.7. Fuel Cell LCVs
    • 8.4.8. Example Fuel Cell LCV Specifications
    • 8.4.9. Outlook for Fuel Cell LCVs

9. FORECASTS

  • 9.1. Forecast Assumptions
  • 9.2. Forecast Methodology
  • 9.3. Market forecast: Average battery capacity for eLCV (kWh) in Europe 2021-2041
  • 9.4. Market forecast: Average battery capacity for eLCV (kWh) in China 2021-2041
  • 9.5. Market forecast: Average battery capacity for eLCV (kWh) in the US 2021-2041
  • 9.6. Market forecast: Average battery capacity for eLCV (kWh) in the RoW 2021-2041
  • 9.7. LCV Market Forecasts 2017-2041
  • 9.8. LCV global sales (000s units) 2017-2041
  • 9.9. eLCV (BEV, PHEV, FCEV) global sales 2017-2041
  • 9.10. eLCV (BEV, PHEV, FCEV) sales by region 2017-2041
  • 9.11. Global LCV market share forecast for eLCV 2017-2041
  • 9.12. Global eLCV battery requirement (GWh) 2017-2041
  • 9.13. eLCV (BEV, PHEV, FCEV) battery forecast by region (GWh) 2017-2041
  • 9.14. eLCV market revenue forecast ($ Billion) 2017-2041
  • 9.15. eLCV market revenue forecast by region ($ billion) 2017-2041
  • 9.16. eLCV (FCEV) installed fuel cell forecast by region (MW)
  • 9.17. France eLCV penetration and sales, pathway to 2041
  • 9.18. UK eLCV penetration and sales, pathway to 2041
  • 9.19. Germany eLCV penetration and sales, pathway to 2041
Back to Top