Cover Image
Market Research Report
Product code
1027309

Role of Wireless ICT in Healthcare - M2M, WBAN and Underlying Technologies: Standardization, Trends and Markets

Published: | PracTel, Inc. | | Delivery time: 1-2 business days

Price

Back to Top
Role of Wireless ICT in Healthcare - M2M, WBAN and Underlying Technologies: Standardization, Trends and Markets
Published: September 10, 2021
PracTel, Inc.
Content info:
Delivery time: 1-2 business days
  • ALL
  • Description
  • Table of Contents
Description

Overview

Typically, a WBAN can comprise of a series of miniature sensor/actuator nodes; each of which has its own energy supply, can include a storage and energy scavenging devices. Each node has also enough intelligence to carry out its task and able to communicate with other sensor nodes or with a central node worn on the body. The central node communicates with the outside world using a standard telecommunication infrastructure such as a wireless LAN or cellular network, which may deliver the information to the M2M network. The network also can deliver services to the person using the WBAN; these services can include the management of chronic disease, medical diagnostic, home monitoring, biometrics, and sports and fitness tracking; or specific military-oriented services and other.

Nodes should be ultra-low power and frequency band agnostic; WBAN is intended to co-exist with legacy networks - primary users of the spectrum. The trend is migration to the M2M networking.

SAMPLE VIEW

Figure 1: WBAN Illustration

Table of Contents

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Scope
    • 1.2.1 Choices
  • 1.3 Status
  • 1.4 Requirements
  • 1.5 WBAN - WMBAN
  • 1.6 Bluetooth
  • 1.7 ZigBee
  • 1.8 Wi-Fi
  • 1.9 Demand
  • 1.10 Crisis
  • 1.11 Focus
  • 1.12 Research Methodology
  • 1.13 Target Audience

2.0 WBAN/WMBAN - Features and Standardization

  • 2.1 General
  • 2.2 Reasons
  • 2.3 Definition
    • 2.3.1 Structure
  • 2.4 Overview
    • 2.4.1 WBAN Requirements
  • 2.5 Groups
    • 2.5.1 By Application
    • 2.5.2 By Transmission Medium
    • 2.5.3 By Number of Nodes
    • 2.5.4 By Environment
    • 2.5.5 By Radio Type
    • 2.5.6 By Place
    • 2.5.7 By Response
    • 2.5.8 By User Condition
    • 2.5.9 By Frequency Spectrum
  • 2.6 FCC Regulations-Frequency Spectrum
  • 2.7 Standardization
    • 2.7.1 General
    • 2.7.2 IEEE 802.15.6
      • 2.7.2.1 Scope
      • 2.7.2.2 Status
      • 2.7.2.3 Structure
      • 2.7.2.4 Major Characteristics
        • 2.7.2.4.1 Specifics
        • 2.7.2.4.2 Overview
          • 2.7.2.4.2.1 Technology Characterization
      • 2.7.2.5 IEEE 802.15.6: Major Points
        • 2.7.2.5.1 Areas of Applications
        • 2.7.2.5.2 Physical Layers
          • 2.7.2.5.2.1 Narrow Band
          • 2.7.2.5.2.2 UWB PHY
          • 2.7.2.5.2.3 HBC PHY
        • 2.7.2.5.3 MAC
        • 2.7.2.5.4 Security
        • 2.7.2.5.5 Power Savings
      • 2.7.2.6 Summary
    • 2.7.3 IEEE 802.15.4j - Medical BAN (MBAN)
      • 2.7.3.1 Scope
      • 2.7.3.2 Differences
      • 2.7.3.3 Timeline
      • 2.7.3.4 Characteristics
        • 2.7.3.4.1 Spectrum and Channel Plan
        • 2.7.3.4.2 Major Parameters
      • 2.7.3.5 Benefits
    • 2.7.4 ISO/IEEE 11073 - Personal Health Data
      • 2.7.4.1 Family
      • 2.7.4.2 IEEE 11073 Scope
  • 2.8 Market Considerations
  • 2.9 ETSI eHealth
    • 2.9.1 Scope
    • 2.9.2 ETSI TR 101 557 V1.1.1 (2012-02) - MBANS
      • 2.9.2.1 General
      • 2.9.2.2 ETSI - MBANS
      • 2.9.2.3 Market Characteristics
      • 2.9.2.4 Technical Details
  • 2.10 Major WBAN Applications
    • 2.10.1 Healthcare
    • 2.10.2 Wellness
    • 2.10.3 First Responders and Military
  • 2.11 Industry
    • AirStrip Technologies
    • GE
    • Intel
    • Medtronic
    • Nokia
    • Siemens
    • Sotera Wireless
    • Sensium
    • Vivago
    • VitaMove
  • 2.12 Summary: WBAN Current and Future Trends

3.0 Underlying Technologies

  • 3.1 IEEE 802.15.1 (Bluetooth-BT)
    • 3.1.1 BT Protocol Stack
      • 3.1.1.1 Transport layer
        • 3.1.1.1.1 Radio Layer
        • 3.1.1.1.2 Baseband and Link Manager Layers
      • 3.1.1.2 Middleware Layer
    • 3.1.2 Profiles
    • 3.1.3 Power Consumption - ULP/BLE
    • 3.1.4 Health Device Profile
      • 3.1.4.1 IEEE 11073 and BT
    • 3.1.5 Highlights
      • 3.1.5.1 The Standard:
      • 3.1.5.2 The Technology:
    • 3.1.6 Evolution
      • 3.1.6.1 BT v2.1
      • 3.1.6.2 BT v3.0
      • 3.1.6.3 BT v4.0 and Further Development
      • 3.1.6.4 BT v5.0, v5.1 and v5.2
    • 3.1.7 Market Estimate
    • 3.1.8 BT Industry-HDP
      • Cambridge Consultants
      • Continua (now part of PCHA)
      • Laird Technologies
      • Nonin
      • Nordic Semiconductor
      • Silicon Labs
  • 3.2 ZigBee
    • 3.2.1 General
    • 3.2.2 Technology
      • 3.2.2.1 Major Features
    • 3.2.3 Device Types
    • 3.2.4 Protocol Stack
      • 3.2.4.1 Physical and MAC Layers - IEEE802.15.4
        • 3.2.4.1.1 Frame
      • 3.2.4.2 Upper Layers
        • 3.2.4.2.1 Network Layer Responsibilities
        • 3.2.4.2.2 Application Layer
    • 3.2.5 Interoperability
    • 3.2.6 Security
    • 3.2.7 Platform Considerations
      • 3.2.7.1 Battery Life
    • 3.2.8 ZigBee Technology Benefits and Limitations
    • 3.2.9 Standardization Process
      • 3.2.9.1 ZigBee Alliance
        • 3.2.9.1.1 Objectives
      • 3.2.9.2 IEEE 802.15.4-2015 and ZigBee
        • 3.2.9.2.1 IEEE 802.15.4 Radio
    • 3.2.10 Applications Specifics
      • 3.2.10.1 Personal, Home and Hospital Care (PHHC) Profile -ZigBee Healthcare
        • 3.2.10.1.1 Objectives
        • 3.2.10.1.2 Details
        • 3.2.10.1.3 Use Cases
    • 3.2.11 Market
      • 3.2.11.1 Segments
      • 3.2.11.2 Forecast
    • 3.2.12 Industry
      • CEL (modules)
      • Digi (Radio, Medical Application)
      • Lamprey Networks, Inc. (LNI)
      • Microchip
      • NXP
      • Philips Applied Technologies (Healthcare)
      • Renesas (Platforms)
      • Silicon Laboratories (Chipsets, Modules, Medical)
      • Synapse (Modules, Protocols)
      • TI (Chipsets)
      • Qorvo (Modules)
  • 3.3 Low-power Consumption Wi-Fi
    • 3.3.1 General
    • 3.3.2 802.11ah (Wi-Fi HaLow)
      • 3.3.2.1 Standard
      • 3.3.2.2 Goal and Schedule
      • 3.3.2.3 Attributes
      • 3.3.2.4 Use Cases
      • 3.3.2.5 PHY
        • 3.3.2.5.1 Bandwidth
        • 3.3.2.5.2 Channelization
        • 3.3.2.5.3 Transmission Modes and MIMO
      • 3.3.2.6 MAC Layer
    • 3.3.3 Summary
    • 3.3.4 Marketing Data
    • 3.3.5 Industry
      • Microchip
      • Morse Micro
      • Newracom-Aviacomm
      • Orca Systems
      • Telit (former GainSpan)
  • 3.4 Z-Wave
    • 3.4.1 General
    • 3.4.2 Z-Wave Alliance
    • 3.4.3 Benefits
    • 3.4.4 Details
      • 3.4.4.1 Background
      • 3.4.4.2 Characteristics
      • 3.4.4.3 G.9959
    • 3.4.5 Advanced Energy Control Framework
      • 3.4.5.1 Further Enhancements
    • 3.4.6 Selected Vendors
      • Aeon Labs-Aeotec
      • NorthQ
      • Vera Control
    • 3.4.7 Market Estimate
      • 3.4.7.1 Model
      • 3.4.7.2 Results
  • 3.5 Selection - Continua Health Alliance
    • 3.5.1 General
    • 3.5.2 Continua Design Guidelines (CDG)

4.0 Self-powered Wireless Sensors

  • 4.1 Methods
  • 4.2 Batteries
  • 4.3 Power Harvesting Technologies
    • 4.3.1 Nodes
    • 4.3.2 Energy Sources
      • 4.3.2.1 General
        • 4.3.2.1.1 Solar Energy
        • 4.3.2.1.2 Thermoelectric
        • 4.3.2.1.3 Mechanical
        • 4.3.2.1.4 RF Power
      • 4.3.2.2 Summary
  • 4.4 Green Technologies Features and Requirements

5.0 Medical WICT and M2M Communications

  • 5.1 M2M Specifics
    • 5.1.1 Definition and Process
    • 5.1.2 Statistics
    • 5.1.3 Properties
    • 5.1.4 P2P and M2M
    • 5.1.5 Choices
      • 5.1.5.1 Cellular
      • 5.1.5.2 Short-range
      • 5.1.5.3 Open Standard
    • 5.1.6 Challenges
    • 5.1.7 Advances
      • 5.1.7.1 Examples
  • 5.2 M2M Standardization
    • 5.2.1 Health Care Specifics
    • 5.2.2 OneM2M Alliance
      • 5.2.2.1 Varieties
      • 5.2.2.2 Service Layer Architecture
      • 5.2.2.3 Benefits
      • 5.2.2.4 oneM2M Standards
    • 5.2.3 M2M Alliance
    • 5.2.4 Open Mobile Alliance (OMA)
    • 5.2.5 ETSI
      • 5.2.5.1 Efforts
      • 5.2.5.2 Architecture
      • 5.2.5.3 Use Case-Healthcare
    • 5.2.6 ITU
      • 5.2.6.1 ITU-T Focus Group - Healthcare
    • 5.2.7 Global M2M Association (GMA)
    • 5.2.8 IETF and IP/WSN
      • 5.2.8.1 Major Projects
        • 5.2.8.1.1 6LoWPAN WG
        • 5.2.8.1.2 ROLL WG
    • 5.2.9 Summary
  • 5.3 Healthcare-M2M Specifics
    • 5.3.1 Role
    • 5.3.2 Monitoring
    • 5.3.3 Cost
    • 5.3.4 Advantages
      • 5.3.4.1 General
      • 5.3.4.2 Savings
      • 5.3.4.3 Categories and Benefits Details
    • 5.3.5 Components
    • 5.3.6 Examples
    • 5.3.7 Issues
  • 5.4 M2M Industry
    • Aeris
    • Iota
    • Kore Telematics
    • Libelium
    • Sigfox
    • Wireless Logic
    • Whiznets
  • 5.5 M2M Markets and Applications
    • 5.5.1 Situation
    • 5.5.2 Structure
    • 5.5.3 Statistics

6.0 Conclusions

Attachment I: IEEE 802.15.4a-2007

Attachment II: MBAN - related Patents Survey (2017-2021)

Attachment III: 802.11ah - related Patents Survey (2017-2021)

List of Figures

  • Figure 1: WBAN Illustration
  • Figure 2: Intelligent Sensor
  • Figure 3: WBAN Characteristics
  • Figure 4: IEEE 802.15.6: Process
  • Figure 5: 802.15.6 - PHY and MAC
  • Figure 6: IEEE 802.15.6 Areas of Applicability
  • Figure 7: Network Topology
  • Figure 8: ISO/IEEE 11073 Protocol Family
  • Figure 9: Estimate: U.S. Annual Healthcare Expenditures ($T)
  • Figure 10: Estimate: U.S. WBAN Equipment Sales - Medical Applications ($B)
  • Figure 11: Estimate: Global - Medical Devices Connectivity Market ($B)
  • Figure 12: Estimate: Patients Wireless Monitoring Devices Sales- Europe ($M)
  • Figure 13: Bluetooth Protocol Stack
  • Figure 14: Piconets Illustration
  • Figure 15: ULP BT Layers
  • Figure 16: BT HDP Building Blocks
  • Figure 19: BT Market Geographical Segmentation
  • Figure 20: Estimate: BT- HDP Modules Global Sales (Bil. Units)
  • Figure 21: Estimate: BT- HDP Modules Global Sales ($B)
  • Figure 22: ZigBee Channels
  • Figure 23: ZigBee Protocol Stack
  • Figure 24: Applications-Illustration
  • Figure 25: Estimate: Global Market Size - ZigBee Chips ($B)
  • Figure 26: Estimate - Global Market - ZigBee Healthcare Applications ($B)
  • Figure 27: ZigBee Market Segmentation (2020)
  • Figure 28: ZigBee Market Segmentation (2024)
  • Figure 29: Backhaul Use Case Illustration
  • Figure 30: Standardized Frequency Spectrum (sub-1 GHz)
  • Figure 31: 802.11ah - Channelization Plan in U.S.
  • Figure 32: Estimate: Low Power Consumption Wi-Fi Modules Sales - U.S. ($B)
  • Figure 33: Estimate: U.S. Small SH Z-Wave IC Market ($B)
  • Figure 34: Estimate: U.S. Large SH Z-Wave IC Market ($B)
  • Figure 35: M2M Process - Illustration
  • Figure 36: Major Layers
  • Figure 37: M2M Use Cases and ETSI Documentation
  • Figure 38: Healthcare Expenses - Percent of GDP (2019)
  • Figure 39: Annual Savings - Adoption of Remote Monitoring (Illustration)
  • Figure 40: Details
  • Figure 41: M2M Applications
  • Figure 42: Projections: M2M Traffic Growth (PB/Month)
  • Figure 43: Estimate- Global Wireless M2M Market Revenue ($B)
  • Figure 44: Estimate: Global-Healthcare Sector-M2M Communications Market ($B)

List of Tables

  • Table 1: ZigBee and 802.15.6 Radios
  • Table 2: Sensors Classification - Placing
  • Table 3: MedRadio Spectrum
  • Table 4: Allowable Power Density
  • Table 5: NB PHY Characteristics
  • Table 6: HBC Characteristics
  • Table 7: Summary - 802.15.6 Properties
  • Table 8: Modulation Parameters
  • Table 9: Transports
  • Table 10: WBAN Medical Applications
  • Table 11: Bluetooth Profiles and Protocols - Samples
  • Table 12: BT v4.2 vs v5.0
  • Table 13: ZigBee Parameters
  • Table 14: 802.11ah Features Summary
  • Table 15: Continua Design Guidelines
  • Table 16: Power Sources
  • Table 17: Data - Illustration
  • Table 18: Components
  • Table 19: Standard Bands