Cover Image
Market Research Report

Role of Wireless ICT in Healthcare: M2M, WBAN and Underlying Technologies - Standardization, Trends and Markets

Published by PracTel, Inc. Product code 536518
Published Content info 193 Pages
Delivery time: 1-2 business days
Price
Back to Top
Role of Wireless ICT in Healthcare: M2M, WBAN and Underlying Technologies - Standardization, Trends and Markets
Published: June 24, 2019 Content info: 193 Pages
Description

BRIEF

This report reviews, updates and extends the Practel M2M/IoT project that has been launched a couple years ago. In particular, it concentrates on the fast-growing healthcare and related segments of M2M/IoT communications.

Ambient Intelligence is a vision where environment becomes smart, friendly, context-aware and responsive to any type of human needs. In such a world, computing and networking technology coexist with people in a ubiquitous, friendly and pervasive way. Numerous miniature and interconnected smart devices create a new intelligence and interact with each other seamlessly. For healthcare, this translates into proliferation of remote monitoring and telemedicine supported by M2M/IoT networking.

The report addresses recent advances in wireless communications technologies for medical/fitness applications. Particular, it analyzes the following related developments:

  • Status of M2M standardization, market and development in general and specifically for medical/wellness applications
  • Development and standardization of the Wireless Body Area Network (WBAN) and Medical Body Area Network (WMBAN), including their markets specifics

Underlying technologies:

  • Bluetooth and its Medical Profile
  • ZigBee and its Medical Profile
  • Wi-Fi low-power consumption technology
  • Z-Wave
  • Self-powered wireless sensors
  • Continua Health Care Alliance activities in the selection of WICT for healthcare
  • Survey of related industries
  • Estimate of related market segments.

The report emphasizes the necessity of further proliferation standardized wireless communications in medicine and wellness to reduce the cost and enhance quality of services.

It also includes the survey of patents related to the discussed subjects.

The report is written for service providers, IT departments of hospitals and other medical organizations, retail operators, vendors, network operators and managers, investors and end users seeking to gain a deeper understanding of new trends in the wireless communications medical/wellness applications.

For systems integrators, the report provides an analysis and assessment of competing products currently available as well as an estimation of the overall opportunities in the coming years.

Table of Contents

Table of Contents

1.0 Introduction

  • 1.1 General
  • 1.2 Scope
  • 1.2.1 Choices
  • 1.3 Status
  • 1.4 Requirements
  • 1.5 WBAN - WMBAN
  • 1.6 Bluetooth
  • 1.7 ZigBee
  • 1.8 Wi-Fi
  • 1.9 Demand
  • 1.10 Crisis
  • 1.11 Focus
  • 1.12 Research Methodology
  • 1.13 Target Audience

2.0 WBAN/WMBAN - Features and Standardization

  • 2.1 General
  • 2.2 Reasons
  • 2.3 Definition
    • 2.3.1 Structure
  • 2.4 Overview
    • 2.4.1 WBAN Requirements
  • 2.5 Groups
    • 2.5.1 By Application
    • 2.5.2 By Transmission Medium
    • 2.5.3 By Number of Nodes
    • 2.5.4 By Environment
    • 2.5.5 By Radio Type
    • 2.5.6 By Place
    • 2.5.7 By Response
    • 2.5.8 By User Condition
    • 2.5.9 By Frequency Spectrum
  • 2.6 FCC Regulations-Frequency Spectrum
  • 2.7 Standardization
    • 2.7.1 General
    • 2.7.2 IEEE 802.15.6
      • 2.7.2.1 Scope
      • 2.7.2.2 Status
      • 2.7.2.3 Structure
      • 2.7.2.4 Major Characteristics
        • 2.7.2.4.1 Specifics
        • 2.7.2.4.2 Overview
          • 2.7.2.4.2.1 Technology Characterization
      • 2.7.2.5 IEEE 802.15.6: Major Points
        • 2.7.2.5.1 Areas of Applications
        • 2.7.2.5.2 Physical Layers
          • 2.7.2.5.2.1 Narrow Band
          • 2.7.2.5.2.2 UWB PHY
          • 2.7.2.5.2.3 HBC PHY
        • 2.7.2.5.3 MAC
        • 2.7.2.5.4 Security
        • 2.7.2.5.5 Power Savings
      • 2.7.2.6 Summary
    • 2.7.3 IEEE 802.15.4j - Medical BAN (MBAN)
      • 2.7.3.1 Scope
      • 2.7.3.2 Differences
      • 2.7.3.3 Timeline
      • 2.7.3.4 Characteristics
        • 2.7.3.4.1 Spectrum and Channel Plan
        • 2.7.3.4.2 Major Parameters
      • 2.7.3.5 Benefits
    • 2.7.4 ISO/IEEE 11073 - Personal Health Data
      • 2.7.4.1 Family
      • 2.7.4.2 IEEE 11073 Scope
  • 2.8 Market Considerations
  • 2.9 ETSI eHealth
    • 2.9.1 Scope
    • 2.9.2 ETSI TR 101 557 V1.1.1 (2012-02) - MBANS
      • 2.9.2.1 General
      • 2.9.2.2 ETSI - MBANS
      • 2.9.2.3 Market Characteristics
      • 2.9.2.4 Technical Details
  • 2.10 Major WBAN Applications
    • 2.10.1 Healthcare
    • 2.10.2 Wellness
    • 2.10.3 First Responders and Military
  • 2.11 Industry
    • AirStrip Technologies
    • GE
    • Intelesens
    • Intel
    • Medtronic
    • Microcemi
    • Nokia
    • Siemens
    • Sotera Wireless
    • Sensium
    • Vivago
    • VitaMove
  • 2.12 Summary: WBAN Current and Future Trends

3.0 Underlying Technologies

  • 3.1 IEEE 802.15.1 (Bluetooth-BT)
    • 3.1.1 BT Protocol Stack
      • 3.1.1.1 Transport layer
        • 3.1.1.1.1 Radio Layer
        • 3.1.1.1.2 Baseband and Link Manager Layers
        • 3.1.1.2 Middleware Layer
    • 3.1.2 Profiles
    • 3.1.3 Power Consumption - ULP/BLE
    • 3.1.4 Health Device Profile
      • 3.1.4.1 IEEE 11073 and BT
    • 3.1.5 Highlights
      • 3.1.5.1 The Standard:
      • 3.1.5.2 The Technology:
    • 3.1.6 Evolution
      • 3.1.6.1 BT v2.1
      • 3.1.6.2 BT v3.0
      • 3.1.6.3 BT v4.0 and Further Development
      • 3.1.6.4 BT v5.0 and v5.1
    • 3.1.7 Market Estimate
    • 3.1.8 BT Industry-HDP
      • Cambridge Consultants
      • Continua (now part of PCHA)
      • Laird Technologies
      • LNI-InHealth
      • Nonin
      • Omron
      • Nordic Semiconductor
      • Silicon Labs
  • 3.2 ZigBee
    • 3.2.1 General
    • 3.2.2 Technology
      • 3.2.2.1 Major Features
    • 3.2.3 Device Types
    • 3.2.4 Protocol Stack
      • 3.2.4.1 Physical and MAC Layers - IEEE802.15.4
        • 3.2.4.1.1 Frame
      • 3.2.4.2 Upper Layers
        • 3.2.4.2.1 Network Layer Responsibilities
        • 3.2.4.2.2 Application Layer
    • 3.2.5 Interoperability
    • 3.2.6 Security
    • 3.2.7 Platform Considerations
      • 3.2.7.1 Battery Life
    • 3.2.8 ZigBee Technology Benefits and Limitations
    • 3.2.9 Standardization Process
      • 3.2.9.1 ZigBee Alliance
        • 3.2.9.1.1 Objectives
      • 3.2.9.2 IEEE 802.15.4-2015 and ZigBee
        • 3.2.9.2.1 IEEE 802.15.4 Radio
    • 3.2.10 Applications Specifics
      • 3.2.10.1 Personal, Home and Hospital Care (PHHC) Profile -ZigBee Healthcare
        • 3.2.10.1.1 Objectives
        • 3.2.10.1.2 Details
        • 3.2.10.1.3 Use Cases
    • 3.2.11 Market
      • 3.2.11.1 Segments
      • 3.2.11.2 Forecast
    • 3.2.12 Industry
      • CEL (modules)
      • Digi (Radio, Medical Application)
      • Lamprey Networks, Inc. (LNI)
      • Microchip
      • NXP
      • Philips Applied Technologies (Healthcare)
      • Renesas (Platforms)
      • Silicon Laboratories (Chipsets, Modules, Medical)
      • Synapse (Modules, Protocols)
      • TI (Chipsets)
      • Qorvo
  • 3.3 Low-power Consumption Wi-Fi
    • 3.3.1 General
    • 3.3.2 802.11ah (Wi-Fi HaLow)
      • 3.3.2.1 Standard
      • 3.3.2.2 Goal and Schedule
      • 3.3.2.3 Attributes
      • 3.3.2.4 Use Cases
      • 3.3.2.5 PHY
        • 3.3.2.5.1 Bandwidth
        • 3.3.2.5.2 Channelization
        • 3.3.2.5.3 Transmission Modes and MIMO
      • 3.3.2.6 MAC Layer
    • 3.3.3 Summary
    • 3.3.4 Marketing Data
    • 3.3.5 Industry
      • Microchip
      • Morse Micro
      • Newracom-Aviacomm
      • Telit (former GainSpan)
  • 3.4 Z-Wave
    • 3.4.1 General
    • 3.4.2 Z-Wave Alliance
    • 3.4.3 Benefits
    • 3.4.4 Details
      • 3.4.4.1 Background
      • 3.4.4.2 Characteristics
      • 3.4.4.3 G.9959
    • 3.4.5 Advanced Energy Control Framework
    • 3.4.6 Selected Vendors
      • Aeon Labs-Aeotec
      • NorthQ
      • There
      • Vera Control
    • 3.4.7 Market Estimate
      • 3.4.7.1 Model
      • 3.4.7.2 Results
  • 3.5 Selection - Continua Health Alliance
    • 3.5.1 General
    • 3.5.2 Continua Design Guidelines (CDG)

4.0 Self-powered Wireless Sensors

  • 4.1 Methods
  • 4.2 Batteries
  • 4.3 Power Harvesting Technologies
    • 4.3.1 Nodes
    • 4.3.2 Energy Sources
      • 4.3.2.1 General
        • 4.3.2.1.1 Solar Energy
        • 4.3.2.1.2 Thermoelectric
        • 4.3.2.1.3 Mechanical
        • 4.3.2.1.4 RF Power
      • 4.3.2.2 Summary
  • 4.4 Green Technologies Features and Requirements

5.0 Medical WICT and M2M Communications

  • 5.1 M2M Specifics
    • 5.1.1 Definition and Process
    • 5.1.2 Statistics
    • 5.1.3 Properties
    • 5.1.4 P2P and M2M
    • 5.1.5 Choices
      • 5.1.5.1 Cellular
      • 5.1.5.2 Short-range
      • 5.1.5.3 Open Standard
      • 5.1.6 Challenges
    • 5.1.7 Advances
      • 5.1.7.1 Examples
  • 5.2 M2M Standardization
    • 5.2.1 Health Care Specifics
    • 5.2.2 OneM2M Alliance
      • 5.2.2.1 Varieties
      • 5.2.2.2 Service Layer Architecture
      • 5.2.2.3 Benefits
      • 5.2.2.4 oneM2M Standards
    • 5.2.3 M2M Alliance
    • 5.2.4 Open Mobile Alliance (OMA)
    • 5.2.5 ETSI
      • 5.2.5.1 Efforts
      • 5.2.5.2 Architecture
      • 5.2.5.3 Use Case-Healthcare
    • 5.2.6 ITU
      • 5.2.6.1 ITU-T Focus Group - Healthcare
    • 5.2.7 Global M2M Association (GMA)
    • 5.2.8 IETF and IP/WSN
      • 5.2.8.1 Major Projects
        • 5.2.8.1.1 6LoWPAN WG
        • 5.2.8.1.2 ROLL WG
    • 5.2.9 Summary
  • 5.3 Healthcare-M2M Specifics
    • 5.3.1 Role
    • 5.3.2 Monitoring
    • 5.3.3 Cost
    • 5.3.4 Advantages
      • 5.3.4.1 General
      • 5.3.4.2 Savings
      • 5.3.4.3 Categories and Benefits Details
    • 5.3.5 Components
    • 5.3.6 Examples
    • 5.3.7 Issues
  • 5.4 M2M Industry
    • Aeris
    • Gemalto (a Thales company)
    • Iota
    • InterDigital/Lamprey Networks
    • Ingenu
    • Jasper Wireless
    • Kore Telematics
    • Libelium
    • Sigfox
    • Wireless Logic
    • Whiznets
  • 5.5 M2M Markets and Applications
    • 5.5.1 Situation
    • 5.5.2 Structure
    • 5.5.3 Statistics

6.0 Conclusions

  • Attachment I: IEEE 802.15.4a-2007
  • Attachment II: MBAN - related Patents Survey (2017-2019)
  • Attachment III: 802.11ah - related Patents Survey (2017-2019)
  • Figure 1: WBAN Illustration
  • Figure 2: Intelligent Sensor
  • Figure 3: WBAN Characteristics
  • Figure 4: IEEE 802.15.6: Process
  • Figure 5: 802.15.6 - PHY and MAC
  • Figure 6: IEEE 802.15.6 Areas of Applicability
  • Figure 7: Network Topology
  • Figure 8: ISO/IEEE 11073 Protocol Family
  • Figure 9: Estimate: U.S. Healthcare Expenditures ($T)
  • Figure 10: Estimate: U.S. WBAN Equipment Sales - Medical Applications ($B)
  • Figure 11: Estimate: Global - Medical Devices Connectivity Market ($B)
  • Figure 12: Estimate: Patient Wireless Monitoring Devices Sales- Europe ($M)
  • Figure 13: Bluetooth Protocol Stack
  • Figure 14: Piconets Illustration
  • Figure 15: ULP BT Layers
  • Figure 16: BT HDP Building Blocks
  • Figure 17: Estimate: Global Sales of BT Modules (Bil. Units)
  • Figure 18: Estimate: Global Seles of BT Modules ($B)
  • Figure 19: BT Market Geographical Segmentation
  • Figure 20: Estimate: BT- HDP Modules Global Sales (Bil. Units)
  • Figure 21: Estimate: BT- HDP Modules Global Sales ($B)
  • Figure 22: ZigBee Channels
  • Figure 23: ZigBee Protocol Stack
  • Figure 24: Applications-Illustration
  • Figure 25: Estimate: Global Market Size - ZigBee Chips ($B)
  • Figure 26: Estimate - Global Market - Healthcare ZigBee ($B)
  • Figure 27: ZigBee Market Segmentation (2019)
  • Figure 28: ZigBee Market Segmentation (2023)
  • Figure 29: Backhaul Use Case Illustration
  • Figure 30: Standardized Frequency Spectrum (sub-1 GHz)
  • Figure 31: 802.11ah - Channelization Plan in U.S.
  • Figure 32: Estimate: Low Power Consumption Wi-Fi Modules Sales - U.S. ($B)
  • Figure 33: Estimate: U.S. Small SH Z-Wave IC Market ($B)
  • Figure 34: Estimate: U.S. Large SH Z-Wave IC Market ($B)
  • Figure 35: M2M Process-Illustration
  • Figure 36: Major Layers
  • Figure 37: M2M Use Cases and ETSI Documentation
  • Figure 38: Healthcare Expenses - Percent of GDP (2018)
  • Figure 39: Annual Savings - Adoption of Remote Monitoring
  • Figure 40: Details
  • Figure 41: M2M Applications
  • Figure 42: Projections: M2M Traffic Growth (PB/Month)
  • Figure 43: Estimate- Global Wireless M2M Market Revenue ($B)
  • Figure 44: Estimate: Global-Health Care Sector-M2M Communications Market ($B)
  • Table 1: ZigBee and 802.15.6 Radios
  • Table 2: Sensors Classification - Placing
  • Table 3: Allowable Power Density
  • Table 4: NB PHY Characteristics
  • Table 5: HBC Characteristics
  • Table 6: Summary - 802.15.6 Properties
  • Table 7: Modulation Parameters
  • Table 8: Transports
  • Table 9: WBAN Medical Applications
  • Table 10: Bluetooth Profiles and Protocols - Samples
  • Table 11: BT v4.2 vs v5.0
  • Table 12: ZigBee Parameters
  • Table 13: 802.11ah Features Summary
  • Table 14: Continua Design Guidelines
  • Table 15: Power Sources
  • Table 16: Data - Illustration
  • Table 17: Components
  • Table 18: Standard Bands
Back to Top