PUBLISHER: Roots Analysis | PRODUCT CODE: 1067327
PUBLISHER: Roots Analysis | PRODUCT CODE: 1067327
Title:
Single-Use Upstream Bioprocessing Technology / Equipment
Market by Type of Product (Single-use Bioreactors, Single-use Mixers, Single-use Media Bags, Single-use Filters, Single-use Sampling Systems, Single-use Connectors and Others), Scale of Operation (Preclinical / Clinical and Commercial) and Key Geographical Regions (North America, Europe, Asia-Pacific, Latin-America, Middle East and North Africa and Rest of the World): Industry Trends and Global Forecasts, 2022-2035.
Over time, biologics have gained significant popularity owing to their therapeutic efficacy, favorable safety profiles and ability to treat a wide variety of disease indications, which are otherwise hard to treat. The success of these interventions has prompted the stakeholders to upgrade the traditional biologics manufacturing technology. The demand for increasing productivity and flexibility, greater profitability and faster time to market are further driving the replacement of traditional stainless-steel equipment with single-use technologies. These technologies have been well-accepted in relatively shorter period of time and have become an important tool in the development of various biotechnological processes. Moreover, the ongoing COVID-19 pandemic has prompted the biopharmaceutical industry to shift to single-use technology. These technologies not only lower down the footprint requirement but also eliminate the cleaning costs in developmental stage. Additionally, the single-use technologies have the potential to address a number of challenges associated with traditional bioprocessing systems and offer various additional benefits, such as reduced water and energy consumption (by ~45%), lower initial investment cost (by 40%), lesser time for processing of biologics (by 33%), decreased risk of cross-contamination (by 8%) and increased cost saving potential (by 30-40%).
Presently, several companies are engaged in developing and manufacturing single-use upstream bioprocessing technologies and equipment, such as single-use bioreactors, single-use mixers, single-use filters, single-use media bags and containers, single-use sampling systems and single-use connectors. Further, a number of these players are also focusing on incorporating additional features, including provisions for alerts / alarms, built-in system process control sensors, electronic process logs, remote monitoring features, touch screens, and advanced safety provisions, in their proprietary offerings. The adoption of this technology is fraught with some challenges, such as risk of extractables and leachable, single-use technology disposability, sterilization / irradiation issues and potential inconsistency of the resins, however, owing to the ongoing research on sustainability of this technology and other technical advancements, we are led to believe that the opportunity for technology providers engaged in this domain is likely to grow in the foreseen future.
The "Single-Use Upstream Bioprocessing Technology / Equipment Market by Type of Product (Single-use Bioreactors, Single-use Mixers, Single-use Media Bags, Single-use Filters, Single-use Sampling Systems, Single-use Connectors and Others), Scale of Operation (Preclinical / Clinical and Commercial) and Key Geographical Regions (North America, Europe, Asia-Pacific, Latin-America, Middle East and North Africa and Rest of the World): Industry Trends and Global Forecasts, 2022-2035" report features an extensive study of the current landscape and the likely future potential of single-use upstream bioprocessing technology and equipment developers, over the next 15 years. The study also features an in-depth analysis, highlighting the capabilities of various industry stakeholders engaged in this field. In addition to other elements, the study includes:
One of the key objectives of the report was to understand the primary growth drivers and estimate the future size of single-use upstream bioprocessing technology / equipment market. Based on multiple parameters, such as overall upstream bioprocessing equipment market, and share of single-use technology, we have provided an informed estimate of the evolution of the market for the period 2022-2035. Our year-wise projections of the current and future opportunity have further been segmented on the basis of [A] scale of operation (preclinical / clinical and commercial), [B] type of product (single-use bioreactors, single-use mixers, single-use media bags, single-use filters, single-use sampling systems, single-use connectors and others), and [C] key geographical regions (North America, Europe, Asia-Pacific, Latin America, MENA and Rest of the World). In order to account for future uncertainties and to add robustness to our model, we have provided three forecast scenarios, namely conservative, base and optimistic scenarios, representing different tracks of the industry's growth.
The opinions and insights presented in this study were also influenced by discussions held with senior stakeholders in the industry. The report features detailed transcripts of interviews held with the following industry players:
All actual figures have been sourced and analyzed from publicly available information forums and primary research discussions. Financial figures mentioned in this report are in USD, unless otherwise specified.
Chapter 2 is an executive summary of the key insights captured in our research. It offers a high-level view on the current state of the single-use upstream bioprocessing technology market and its likely evolution in the short to mid-term and long term.
Chapter 3 provides a general introduction to bioprocessing industry, covering details related to the current trends in the domain. The chapter provides details on the historical evolution of single-use technology and different types of single-use equipment. It emphasizes on various advantages and key challenges associated with the single-use technologies. In addition, it discusses implementation strategies of the single-use upstream bioprocessing technology and future prospects.
Chapter 4 provides a detailed assessment of the overall market landscape of single-use bioreactors based on a number of relevant parameters, such as scale of operation (lab, clinical and commercial), type of cell culture system (2D culture and 3D culture), type of cell culture (mammalian, insect, microbial, viral, plant and others), type of molecule (vaccine, monoclonal antibody, recombinant protein, stem cell, cell therapy, gene therapy and others), key features (touch screen, remote monitoring, build-in system control sensors, electronic log record, alarm system), application area (stem cell research, cancer research, regenerative medicine, drug discovery and others) and end users (pharma / biopharma, contract manufacturing organization, contract research organization and academic institutes). In addition, it presents details of the companies developing single-use bioreactors, highlighting their year of establishment, company size, and geographical presence.
Chapter 5 provides a detailed assessment of the overall market landscape of single-use mixers based on a number of relevant parameters, such as scale of operation (lab, clinical and commercial), type of mixing system (liquid / liquid, solid / liquid and powder / liquid), type of molecule (vaccines, biologics, biosimilars and monoclonal antibody), key features (visual display / touch screen, ease to use / scalability, build-in system control sensors and process automation) and application area (media preparation, formulation, buffer preparation, viral inactivation and others). In addition, it presents details of the companies developing single-use bioreactors, highlighting their year of establishment, company size, and geographical presence.
Chapter 6 provides a detailed assessment of the overall market landscape of single-use sensors, based on several relevant parameters, such as type of sensor (conductivity, flow, pH, pressure and temperature), type of bioprocessing, measurement range, operating temperature, sterilization technique, material used) and application area. In addition, the chapter presents details of the companies involved in the development of single-use sensors, including information on their year of establishment, company size, and geographical presence.
Chapter 7 features a tabulated section presenting the overall market landscape of other single-use technologies, such as filters, sampling systems and connectors.
Chapter 8 features a detailed competitiveness analysis of single-use bioreactors, single-use mixers and single-use sensors, taking into consideration several relevant parameters. For single-use bioreactors, the parameters taken into account include the product applicability (type of cell culture, type of molecule and application area) and product strength (type of cell culture system, scale of operation and key features). For single-use mixers, the parameters taken into account include the product applicability (type of mixing system, type of molecule and application area) and product strength (scale of operation). For single-use sensors, the parameters taken into account include the product specificity (minimum operating temperature, maximum operating temperature, type of calibration and type of sterilization technique) and product strength (application area and type of bioprocessing).
Chapter 9 features tabulated profiles of the key players providing single-use upstream bioprocessing technologies, which are headquartered in North America. Each profile includes an overview of the company, information on the financial performance (if available), service portfolio, product portfolio, recent developments, and an informed future outlook.
Chapter 10 features tabulated profiles of the key players providing single-use upstream bioprocessing technologies, which are headquartered in Europe. Each profile includes an overview of the company, information on the financial performance (if available), service portfolio, product portfolio, recent developments, and an informed future outlook.
Chapter 11 features tabulated profiles of the key players providing single-use upstream bioprocessing technologies, which are headquartered in Asia-Pacific. Each profile includes an overview of the company, information on the financial performance (if available), service portfolio, product portfolio, recent developments, and an informed future outlook.
Chapter 12 presents an in-depth analysis of various patents that have been filed / granted for single-use upstream bioprocessing technology, till December 2021, highlighting key trends associated with these patents, across type of patents, publication year, application year, issuing authorities involved, type of organizations, emerging focus area, patent age, CPC symbols, leading patent assignees (in terms of number of patents granted / filed), patent characteristics and geography. It also includes a detailed patent benchmarking and an insightful valuation analysis.
Chapter 13 provides a detailed brand positioning analysis of the key industry players (including single-use bioreactor developers, single-use mixers developers and single-use sensors developers), highlighting the current perceptions regarding their proprietary products by taking into consideration several relevant aspects, such as experience of the manufacturer, number of products offered, product diversity, and number of patents published.
Chapter 14 presents an insightful analysis of the cost and time saving potential of single-use upstream bioprocessing technology.
Chapter 15 provides an informed estimate on the current and future demand and supply of biologics manufactured using single-use upstream bioprocessing technologies, for the period 2022-2035.
Chapter 16 features a comprehensive market forecast analysis, highlighting the future potential of the market till 2035, based on multiple parameters, such as overall upstream bioprocessing equipment market, and share of single-use technology. It includes an informed estimate of the evolution of the market for the period 2022-2035. We have segregated the current and future opportunity have further been segmented on the basis of [A] scale of operation (preclinical / clinical and commercial), [B] type of product (single-use bioreactors, single-use mixers, single-use media bags, single-use filters, single-use sampling systems, single-use connectors and others), and [C] key geographical regions (North America, Europe, Asia-Pacific, Latin America, MENA and Rest of the World). It is worth mentioning that we adopted a top-down approach for this analysis, backing our claims with relevant datapoints and credible inputs from primary research.
Chapter 17 is the summary of the overall report, which presents insights on the contemporary market trends and the likely evolution of the single-use upstream bioprocessing market.
Chapter 18 is a collection of interview transcripts of discussions held with various key stakeholders in this market. The chapter provides a brief overview of the company and details of the interview held with Christopher Brau (R&D Staff Scientist and Engineer, Thermo Fisher Scientific) and Nico Oosterhuis (Technical Director and Co-Owner, Celltainer Biotech).
Chapter 19 is an appendix, which provides tabulated data and numbers for all the figures provided in the report.
Chapter 20 is an appendix, which contains the list of companies and organizations mentioned in the report.