Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Astute Analytica | PRODUCT CODE: 1804271

Cover Image

PUBLISHER: Astute Analytica | PRODUCT CODE: 1804271

Global Simulation Market: Component, Technology, Application, Region-Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2025-2033

PUBLISHED:
PAGES: 491 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 4250
PDF & Excel (Multi User License)
USD 5250
PDF, Excel & PPT (Corporate User License)
USD 6400

Add to Cart

The simulation market is experiencing rapid expansion as it encompasses the development and deployment of software, hardware, and services designed to create highly realistic virtual models. These models serve a variety of critical functions, including detailed analysis, process optimization, training, and testing, across a broad spectrum of industries. By replicating real-world scenarios in a controlled virtual environment, simulation technologies enable organizations to reduce costs, improve safety, and accelerate innovation. In 2024, the simulation market was valued at an impressive US$ 72.44 billion, reflecting its growing importance and adoption worldwide.

Looking ahead, the market is projected to nearly double in size, reaching a valuation of US$ 172.33 billion by 2033. This growth corresponds to a compound annual growth rate (CAGR) of 11.44% over the forecast period from 2025 to 2033. Such robust growth underscores the increasing demand for sophisticated simulation tools that can address complex challenges across industries such as aerospace, automotive, healthcare, manufacturing, and defense.

Noteworthy Market Developments

The simulation market spans a diverse array of industries and applications, with the leading companies often differing based on the specific sector they serve. Among the major players recognized for their influence and innovation are CAE Inc., ANSYS, Dassault Systemes, and Altair Engineering, each offering specialized simulation solutions tailored to meet the demands of various fields.

In a more specialized niche, eMI Aesthetics has emerged as a leader in AI-driven cosmetic imaging by launching an innovative AI-powered aesthetic simulation platform designed to revolutionize cosmetic treatment visualization. With a growing user base exceeding 100,000 individuals worldwide, the platform empowers both men and women to visualize potential aesthetic outcomes before visiting a clinic. By simply uploading a selfie, users can preview the effects of non-invasive cosmetic procedures such as Botox(R) and dermal fillers.

On the software development front, JangaFX has introduced LiquiGen, a cutting-edge real-time liquid simulation tool that expands creative possibilities for digital artists and developers. LiquiGen supports the simulation of a wide range of liquids, from water and blood to ketchup and slime, bringing unprecedented realism and flexibility to fluid dynamics modeling. The platform's real-time meshing capability allows users to manipulate fluids dynamically by applying various forces, enabling highly interactive and visually compelling simulations suitable for gaming, visual effects, and virtual environments.

Core Growth Drivers

The simulation market is undergoing a transformative shift fueled by the integration of artificial intelligence technologies, which are revolutionizing computational modeling capabilities and significantly improving predictive accuracy. This advancement is enabling organizations to perform simulations with greater speed, precision, and insight, ultimately driving more informed decision-making and operational efficiency. Leading enterprises recognize the immense potential of AI-enhanced simulation platforms and are investing heavily, with annual expenditures reaching approximately US$ 4,870 million. This substantial investment underscores the strategic importance of AI in reshaping simulation processes across various industries.

Companies like NVIDIA are at the forefront of this technological evolution, developing sophisticated neural network architectures that drastically reduce simulation processing times. For instance, tasks that traditionally required up to 48 hours to complete can now be executed in just 3.5 hours, a dramatic acceleration that allows for faster iteration cycles and more timely analysis. This reduction in runtime not only enhances productivity but also opens the door to more complex and detailed simulations that were previously limited by computational constraints.

Emerging Technology Trends

The simulation market is undergoing a profound transformation driven by the convergence of advanced technologies that both enhance model fidelity and significantly reduce runtime. This evolution enables more accurate and detailed simulations while accelerating the speed at which results are produced, thereby empowering industries to innovate faster and with greater confidence. One of the key enablers of this shift is the adoption of edge-to-cloud computing frameworks, which distribute complex co-simulation tasks across thousands of GPUs.

Prominent platforms like NVIDIA Omniverse and AWS SimSpace Weaver are at the forefront of this development, coordinating up to 1.2 million digital twins simultaneously in real time. These digital twins-virtual replicas of physical systems-enable continuous monitoring, testing, and optimization of assets and processes, providing real-time insights that drive smarter decision-making.

Barriers to Optimization

The simulation market is currently grappling with notable challenges stemming from its fragmentation across multiple dimensions, including industry verticals, geographical regions, and technology platforms. This fragmented landscape creates considerable uncertainty for stakeholders, particularly those seeking to make informed long-term investment decisions. The lack of a unified market structure complicates efforts to assess overall market size and growth potential, as varying definitions and segmentation criteria lead to inconsistent data and projections.

Market research firms exemplify this uncertainty by presenting conflicting valuations for the simulation market in 2024, with estimates ranging widely between US$ 16,200 million and US$ 23,400 million. Additionally, growth projections vary significantly, with differences of up to 7.6 percentage points depending on the methodologies employed and the ways in which the market is segmented. These discrepancies highlight the challenges in capturing the true scope and trajectory of the simulation market, fueled in part by its varied applications and technological approaches.

Detailed Market Segmentation

By Technology, Virtual reality (VR) simulators hold a dominant position in the simulation market, capturing more than 37.52% of the total market share through their transformative impact on training applications across various industries. The annual revenue generated by VR simulators reaches an impressive US$ 8,670 million, reflecting their widespread adoption in sectors such as medical, aviation, and military. This technology's immersive nature allows users to engage with realistic virtual environments, significantly enhancing learning outcomes, skill development, and operational preparedness in a safe and controlled setting.

By Application, the aerospace and defense sectors lead the simulation market in terms of hardware consumption, reflecting their substantial investments in specialized computing infrastructure to support critical national security and space exploration initiatives. These industries demand extraordinarily high-performance simulation environments capable of handling complex scenarios and large datasets, necessitating significant capital allocation for cutting-edge hardware. Annually, the aerospace and defense sectors invest approximately US$ 14,230 million in simulation hardware, underscoring their commitment to leveraging advanced technology for research, development, and operational readiness.

Within the simulation market, hardware components hold a commanding presence, accounting for a significant 45.22% share driven by the increasing computational requirements of advanced simulation applications. As simulations become more complex and data-intensive, organizations are compelled to invest heavily in specialized processing units and high-performance computing clusters capable of handling vast amounts of data with speed and accuracy. These hardware investments are critical to delivering realistic, high-fidelity simulation experiences that meet the rigorous demands of industries such as aerospace, automotive, and defense.

Segment Breakdown

By Component

  • Hardware
    • Simulators
    • Parts and Accessories
  • Software
    • On Premises
      • Single Site
      • Multi-Site
    • Cloud
      • Public Cloud
      • Private Cloud
      • Hybrid Cloud
  • Services
    • Consulting
    • Integration
    • Training
    • Maintenance

By Technology

  • Virtual Reality (VR) Simulators
  • Augmented Reality (AR) Simulators
  • AI & Machine Learning-Based Simulators
  • Digital Twin Simulation

By Application

  • Hardware
  • Aerospace & Defense Simulators
    • Flight Simulators
    • Combat Training Simulators
    • Naval & Maritime Simulators
    • Ground Forces Simulators
    • Others (Includes -
      • Air Traffic Control Simulators
      • CBRN (Chemical/Biological) Simulators
      • Satellite Mission Simulators
  • Automotive Simulators
    • Driving Simulators
    • Autonomous Vehicle Testing Simulators
    • Crash Test & Safety Simulators
    • Others (Includes -
      • In-Vehicle UX/HMI Simulation
      • Battery Management & Powertrain Optimization Simulators)
  • Healthcare & Medical Simulators
    • Surgical Simulators
    • Patient Simulators
    • Medical Device & Equipment Testing Simulators
    • Others (Includes -
      • Emergency/Public Health Simulation
      • Mental Health & VR Therapy Simulators)
  • Industrial & Manufacturing Simulators
    • Process Automation & Robotics Simulators
    • Factory Floor & Digital Twin Simulators
    • Supply Chain & Logistics Simulators
    • Others (Includes -
      • Digital Twin for Predictive Maintenance
      • Human-Machine Interaction Simulators
      • Safety & Emergency Response Simulators)
  • Maritime & Naval Simulators
    • Ship Handling Simulators
    • Submarine & Sonar Training Simulators
    • Port & Traffic Control Simulators
    • Others (Includes -
      • Ice Navigation Simulators
      • Environmental/Emission Compliance Simulators)
  • Energy & Power Simulators
    • Nuclear Reactor & Power Plant Simulators
    • Oil & Gas Exploration Simulators
    • Renewable Energy Grid Simulators
    • Others (Includes -
      • Carbon Capture & Storage (CCS) Simulators
      • Emergency (Shutdown & Blackout Scenario) Simulators)
  • Gaming & Entertainment Simulators
    • Virtual Reality (VR) & Augmented Reality (AR) Simulators
    • Esports & Racing Simulators
    • Flight & Space Exploration Simulators
    • Others (Includes -
      • Cinematic (Previsualization) Simulators
      • Virtual Event/Concert Experience Simulators)
  • Education & Research Simulators
    • Engineering & Scientific Simulators
    • Medical & Biological Research Simulators
    • Business & Economic Simulation Models
    • Others (Includes -
      • Social Behaviour & Psychology Simulators
      • Arts & Creative Skill Simulators)
  • Software
    • Product Design & Engineering (e.g., CAD/CAE)
    • Process Optimization
    • Training & Education
    • Research & Development
    • Predictive Maintenance
    • Digital Twin Modeling
    • Risk Analysis & Forecasting

By Region

  • North America
    • The U.S.
    • Canada
    • Mexico
  • Europe
    • The UK
    • Germany
    • France
    • Italy
    • Spain
    • Poland
    • Russia
    • Rest of Europe
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia & New Zealand
    • ASEAN
      • Malaysia
      • Singapore
      • Thailand
      • Indonesia
      • Philippines
      • Vietnam
      • Rest of ASEAN
    • Rest of Asia Pacific
  • Middle East & Africa
    • UAE
    • Saudi Arabia
    • South Africa
    • Rest of MEA
  • South America
    • Argentina
    • Brazil
    • Rest of South America

Geographical Breakdown

North America's dominance in the simulation market is largely attributed to its well-established and dynamic technology ecosystem, which includes a strong presence of leading simulation software companies. The region's industrial landscape is highly mature, with sectors such as aerospace and manufacturing actively investing in cutting-edge simulation technologies to enhance their operations and product development. For example, prominent aerospace giants like Boeing and Lockheed Martin have dedicated approximately US$ 1,890 million specifically toward implementing digital twin technologies, which allow for virtual replication and real-time monitoring of physical assets.

The growth momentum in North America's simulation market is further accelerated by significant investments in 5G infrastructure led by technology powerhouses, including Intel, Qualcomm, and AT&T. The deployment of 5G networks enhances real-time data transmission and computational capabilities, enabling more sophisticated and responsive simulation applications. This advancement is particularly impactful across approximately 890 research centers dedicated to developing next-generation autonomous systems, where real-time simulation is crucial for testing and validating complex algorithms and hardware components.

Leading Market Participants

  • RTDS Technologies Inc
  • ANSYS Inc.
  • Siemens AG
  • Autodesk Inc.
  • Altair Engineering Inc.
  • Cadence Design Systems, Inc.
  • Dassault Systemes
  • Robert Bosch GmbH
  • Hexagon AB
  • Rockwell Automation
  • Mathworks
  • Honeywell International Inc.
  • Emerson Electric Co.
  • SAS Institute Inc.
  • PTC
  • Other Prominent Players
Product Code: AA07251372

Table of Content

Chapter 1. Research Framework

  • 1.1. Research Objective
  • 1.2. Product Overview
  • 1.3. Market Segmentation

Chapter 2. Research Methodology

  • 2.1. Qualitative Research
    • 2.1.1. Primary & Secondary Sources
  • 2.2. Quantitative Research
    • 2.2.1. Primary & Secondary Sources
  • 2.3. Breakdown of Primary Research Respondents, By Region
  • 2.4. Assumption for the Study
  • 2.5. Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Simulation Market

Chapter 4. Global Simulation Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Developer
    • 4.1.2. Integrator
    • 4.1.3. Service Provider
    • 4.1.4. End User
  • 4.2. Industry Outlook
    • 4.2.1. Global R&D investment
    • 4.2.2. Key Business Applications and Use Cases of Simulation
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Opportunities
    • 4.5.4. Key Trends
  • 4.6. Market Growth and Outlook
    • 4.6.1. Market Revenue Estimates and Forecast (US$ Bn), 2020 - 2033
    • 4.6.2. Price Trend Analysis, By Component
  • 4.7. Competition Dashboard
    • 4.7.1. Market Concentration Rate
    • 4.7.2. Company Market Share Analysis (Value %), 2024
    • 4.7.3. Competitor Mapping & Benchmarking
  • 4.8. Actionable Insights (Analyst's Recommendations)

Chapter 5. Global Simulation Market Analysis, By Component

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 5.2.1. Hardware
      • 5.2.1.1. Simulators
      • 5.2.1.2. Parts and Accessories
    • 5.2.2. Software
      • 5.2.2.1. On Premises
        • 5.2.2.1.1. Single Site
        • 5.2.2.1.2. Multi-Site
      • 5.2.2.2. Cloud
        • 5.2.2.2.1. Public Cloud
        • 5.2.2.2.2. Private Cloud
        • 5.2.2.2.3. Hybrid Cloud
    • 5.2.3. Services
      • 5.2.3.1. Consulting
      • 5.2.3.2. Integration
      • 5.2.3.3. Training
      • 5.2.3.4. Maintenance

Chapter 6. Global Simulation Market Analysis, By Technology

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 6.2.1. Virtual Reality (VR) Simulators
    • 6.2.2. Augmented Reality (AR) Simulators
    • 6.2.3. AI & Machine Learning-Based Simulators
    • 6.2.4. Digital Twin Simulation

Chapter 7. Global Simulation Market Analysis, By Application

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 7.2.1. Hardware
      • 7.2.1.1. Aerospace & Defense Simulators
        • 7.2.1.1.1. Flight Simulators
        • 7.2.1.1.2. Combat Training Simulators
        • 7.2.1.1.3. Naval & Maritime Simulators
        • 7.2.1.1.4. Ground Forces Simulators
        • 7.2.1.1.5. Others (Includes -
          • 7.2.1.1.5.1. Air Traffic Control Simulators
          • 7.2.1.1.5.2. CBRN (Chemical/Biological) Simulators
          • 7.2.1.1.5.3. Satellite Mission Simulators)
      • 7.2.1.2. Automotive Simulators
        • 7.2.1.2.1. Driving Simulators
        • 7.2.1.2.2. Autonomous Vehicle Testing Simulators
        • 7.2.1.2.3. Crash Test & Safety Simulators
        • 7.2.1.2.4. Others (Includes -
          • 7.2.1.2.4.1. In-Vehicle UX/HMI Simulation
          • 7.2.1.2.4.2. Battery Management & Powertrain Optimization Simulators)
      • 7.2.1.3. Healthcare & Medical Simulators
        • 7.2.1.3.1. Surgical Simulators
        • 7.2.1.3.2. Patient Simulators
        • 7.2.1.3.3. Medical Device & Equipment Testing Simulators
        • 7.2.1.3.4. Others (Includes -
          • 7.2.1.3.4.1. Emergency/Public Health Simulation
          • 7.2.1.3.4.2. Mental Health & VR Therapy Simulators)
      • 7.2.1.4. Industrial & Manufacturing Simulators
        • 7.2.1.4.1. Process Automation & Robotics Simulators
        • 7.2.1.4.2. Factory Floor & Digital Twin Simulators
        • 7.2.1.4.3. Supply Chain & Logistics Simulators
        • 7.2.1.4.4. Others (Includes -
          • 7.2.1.4.4.1. Digital Twin for Predictive Maintenance
          • 7.2.1.4.4.2. Human-Machine Interaction Simulators
          • 7.2.1.4.4.3. Safety & Emergency Response Simulators)
      • 7.2.1.5. Maritime & Naval Simulators
        • 7.2.1.5.1. Ship Handling Simulators
        • 7.2.1.5.2. Submarine & Sonar Training Simulators
        • 7.2.1.5.3. Port & Traffic Control Simulators
        • 7.2.1.5.4. Others (Includes -
          • 7.2.1.5.4.1. Ice Navigation Simulators
          • 7.2.1.5.4.2. Environmental/Emission Compliance Simulators)
      • 7.2.1.6. Energy & Power Simulators
        • 7.2.1.6.1. Nuclear Reactor & Power Plant Simulators
        • 7.2.1.6.2. Oil & Gas Exploration Simulators
        • 7.2.1.6.3. Renewable Energy Grid Simulators
        • 7.2.1.6.4. Others (Includes -
          • 7.2.1.6.4.1. Carbon Capture & Storage (CCS) Simulators
          • 7.2.1.6.4.2. Emergency (Shutdown & Blackout Scenario) Simulators)
      • 7.2.1.7. Gaming & Entertainment Simulators
        • 7.2.1.7.1. Virtual Reality (VR) & Augmented Reality (AR) Simulators
        • 7.2.1.7.2. Esports & Racing Simulators
        • 7.2.1.7.3. Flight & Space Exploration Simulators
        • 7.2.1.7.4. Others (Includes -
          • 7.2.1.7.4.1. Cinematic (Previsualization) Simulators
          • 7.2.1.7.4.2. Virtual Event/Concert Experience Simulators)
      • 7.2.1.8. Education & Research Simulators
        • 7.2.1.8.1. Engineering & Scientific Simulators
        • 7.2.1.8.2. Medical & Biological Research Simulators
        • 7.2.1.8.3. Business & Economic Simulation Models
        • 7.2.1.8.4. Others (Includes -
          • 7.2.1.8.4.1. Social Behaviour & Psychology Simulators
          • 7.2.1.8.4.2. Arts & Creative Skill Simulators)
    • 7.2.2. Software
      • 7.2.2.1. Product Design & Engineering (e.g., CAD/CAE)
      • 7.2.2.2. Process Optimization
      • 7.2.2.3. Training & Education
      • 7.2.2.4. Research & Development
      • 7.2.2.5. Predictive Maintenance
      • 7.2.2.6. Digital Twin Modeling
      • 7.2.2.7. Risk Analysis & Forecasting

Chapter 8. Global Simulation Market Analysis, By Region

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 8.2.1. North America
      • 8.2.1.1. The U.S.
      • 8.2.1.2. Canada
      • 8.2.1.3. Mexico
    • 8.2.2. Western Europe
      • 8.2.2.1. The UK
      • 8.2.2.2. Germany
      • 8.2.2.3. France
      • 8.2.2.4. Italy
      • 8.2.2.5. Spain
      • 8.2.2.6. Rest of Western Europe
    • 8.2.3. Eastern Europe
      • 8.2.3.1. Poland
      • 8.2.3.2. Russia
      • 8.2.3.3. Hungary
      • 8.2.3.4. Rest of Eastern Europe
    • 8.2.4. Asia Pacific
      • 8.2.4.1. China
      • 8.2.4.2. India
      • 8.2.4.3. Japan
      • 8.2.4.4. South Korea
      • 8.2.4.5. Australia & New Zealand
      • 8.2.4.6. ASEAN
      • 8.2.4.7. Rest of Asia Pacific
    • 8.2.5. Middle East
      • 8.2.5.1. UAE
      • 8.2.5.2. Saudi Arabia
      • 8.2.5.3. Bahrain
      • 8.2.5.4. Kuwait
      • 8.2.5.5. Qatar
      • 8.2.5.6. Rest of Middle East
    • 8.2.6. Africa
      • 8.2.6.1. Oman
      • 8.2.6.2. Egypt
      • 8.2.6.3. Nigeria
      • 8.2.6.4. South Africa
      • 8.2.6.5. Rest of Africa
    • 8.2.7. South America
      • 8.2.7.1. Argentina
      • 8.2.7.2. Brazil
      • 8.2.7.3. Rest of South America

Chapter 9. North America Simulation Market Analysis

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 9.2.1. By Component
    • 9.2.2. By Technology
    • 9.2.3. By Application
    • 9.2.4. By Country

Chapter 10. Western Europe Simulation Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By Country

Chapter 11. Eastern Europe Simulation Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 11.2.1. By Component
    • 11.2.2. By Technology
    • 11.2.3. By Application
    • 11.2.4. By Country

Chapter 12. Asia Pacific Simulation Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 12.2.1. By Component
    • 12.2.2. By Technology
    • 12.2.3. By Application
    • 12.2.4. By Country

Chapter 13. Middle East Simulation Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 13.2.1. By Component
    • 13.2.2. By Technology
    • 13.2.3. By Application
    • 13.2.4. By Country

Chapter 14. Africa Simulation Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 14.2.1. By Component
    • 14.2.2. By Technology
    • 14.2.3. By Application
    • 14.2.4. By Country

Chapter 15. South America Simulation Market Analysis

  • 15.1. Key Insights
  • 15.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 15.2.1. By Component
    • 15.2.2. By Technology
    • 15.2.3. By Application
    • 15.2.4. By Country

Chapter 16. China Simulation Market Analysis

  • 16.1. Key Insights
  • 16.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 16.2.1. By Component
    • 16.2.2. By Technology
    • 16.2.3. By Application

Chapter 17. India Simulation Market Analysis

  • 17.1. Key Insights
  • 17.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 17.2.1. By Component
    • 17.2.2. By Technology
    • 17.2.3. By Application

Chapter 18. Japan Simulation Market Analysis

  • 18.1. Key Insights
  • 18.2. Market Size and Forecast, 2020 - 2033 (US$ Bn)
    • 18.2.1. By Component
    • 18.2.2. By Technology
    • 18.2.3. By Application

Chapter 19. Company Profile (Company Overview, Financial Matrix, Key Type landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 19.1. RTDS Technologies Inc
  • 19.2. ANSYS Inc.
  • 19.3. Siemens AG
  • 19.4. Autodesk Inc.
  • 19.5. Altair Engineering Inc.
  • 19.6. Cadence Design Systems, Inc.
  • 19.7. Dassault Systemes
  • 19.8. Robert Bosch GmbH
  • 19.9. Hexagon AB
  • 19.10. Rockwell Automation
  • 19.11. Mathworks
  • 19.12. Honeywell International Inc.
  • 19.13. Emerson Electric Co.
  • 19.14. SAS Institute Inc.
  • 19.15. PTC
  • 19.16. Other Prominent Players

Chapter 20. Annexure

  • 20.1. List of Secondary Simulation Types
  • 20.2. Key Country Markets - Marco Economic Outlook/Indicators
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!