Notice: Global Information Announces Listing on JASDAQ Standard Market of the Tokyo Stock Exchange

Cover Image
Market Research Report

Global Cord Blood Banking Industry Report 2021

Published by BIOINFORMANT WORLDWIDE, LLC Product code 980133
Published Content info 232 Pages
Delivery time: 1-2 business days
Price
Back to Top
Global Cord Blood Banking Industry Report 2021
Published: January 4, 2021 Content info: 232 Pages
Description

EXECUTIVE SUMMMARY

From the early 1900s through the mid-2000s, the global cord blood banking industry proliferated with cord blood banks emerging in all major healthcare markets worldwide. From 2005 to 2010, the market reached saturation and stabilized. From 2010 to 2020, the market began to aggressively consolidate, creating both threats and opportunities within the industry.

Serious threats to the industry include low rates of utilization for stored cord blood, expensive cord blood transplantation procedures, difficulty educating obstetricians about cellular therapies, and an increasing trend toward industry consolidation. Opportunities for the industry include price efficiencies associated with scale and consolidation, accelerated regulatory pathways for cord blood and tissue-based cell therapies, and progress with ex vivo cellular expansion technologies.

Cord Blood Industry Trends

Within recent years, new themes have been impacting the industry, including the pairing of stem cell storage services with genetic and genomic testing services, as well as reproductive health services. Cord blood banks are diversifying into new types of stem cell storage, including umbilical cord tissue storage, placental blood and tissue, amniotic fluid and tissue, and dental pulp. Cord blood banks are also investigating means of becoming integrated therapeutic companies. With hundreds of companies offering cord blood banking services worldwide, maturation of the market means that each company is fighting harder for market share.

Growing numbers of investors are also entering the marketplace, with M&A activity accelerating in the U.S. and abroad. Holding companies are emerging as a global theme, allowing for increased operational efficiency and economy of scale. Cryoholdco has established itself as the market leader within Latin America. Created in 2015, Cryoholdco is a holding company that controls over a quarter of a million stem cell units (approximately 270,000). It owns a half dozen cord blood banks, as well as a dental stem cell storage company.

Globally, networks of cord blood banks have become commonplace, with Sanpower Group establishing its dominance in Asia. Although Sanpower has been quiet about its operations, it holds 4 licenses out of only 7 issued provincial-level cord blood bank licenses in China. It has reserved over 900,000 cord blood samples in China, and its reserves amount to over 1.2 million units when Cordlife' reserves within Southeast Asian countries are included. This positions Sanpower Group and its subsidiary Nanjing Cenbest as the world's largest cord blood banking operator not only in China and Southeast Asia, but in the world.

The number of cord blood banks in Europe has dropped by more than one-third over the past ten years, from approximately 150 to under 100. The industry leaders in this market segment include FamiCord Group, who has executed a dozen M&A transactions, and Vita34, who has executed approximately a half dozen. Stemlab, the largest cord blood bank in Portugal, also executed three acquisition deals prior to being acquired by FamiCord. FamiCord is now the leading stem cell bank in Europe and one of the largest worldwide.

Cord Blood Expansion Technologies

Because cord blood utilization is largely limited to use in pediatric patients, growing investment is flowing into ex vivo cord blood expansion technologies. If successful, this technology could greatly expand the market potential for cord blood, encouraging its use within new markets, such as regenerative medicine, aging, and augmented immunity.

Key strategies being explored for this purpose include:

  • Nicotinamide-mediated (NAM) expansion
  • Notch ligand
  • SR-1
  • UM171
  • PGE2
  • Enforced fucosylation

Currently, Gamida Cell, Nohla Therapeutics, Excellthera, and Magenta Therapeutics have ex vivo cord blood expansion products proceeding through clinical trials. Growing numbers of investors have also entered the cord blood banking marketplace, led by groups such as GI Partners, ABS Capital Partners & HLM Management, KKR & Company, Bay City Capital, GTCR, LLC, and Excalibur.

Cord Blood Banking by Region

Within the United States, most of the market share is controlled by three major players: Cord Blood Registry (CBR), Cryo-Cell and ViaCord. CBR has been traded twice, once in 2015 to AMAG Pharmaceuticals for $700 million and again in 2018 to GI Partners for $530 million. Today, GI Partners has combined Cord Blood Registry and California Cryobank under the brand name Generate Life Sciences. CBR also bought Natera's Evercord Cord Blood Banking business in September 2019. In total, CBR controls over 900,000 cord blood and tissue samples, making it one of the largest cord blood banks worldwide.

In China, the government controls the industry by authorizing only one cord blood bank to operate within each province, and official government support, authorization, and permits are required. However, the Chinese government has announced that will issue new licenses for the first time, expanding from the current 7 licensed regions for cord blood banking to up to 19 regions, including Beijing.

In Italy and France, it is illegal to privately store one's cord blood, which has fully eliminated the potential for a private market to exist within the region. In Ecuador, the government created he first public cord blood bank and instituted laws such that private cord blood banks cannot approach women about private cord blood banking options during the first six months of pregnancy. This created a crisis for the private banks, forcing most out of business.

Recently, India's Central Drugs Standard Control Organization (CDSCO) restricted commercial banking of stem cells from most biological materials, including cord tissue, placenta, and dental pulp stem cells - leaving only umbilical cord blood banking as "permitted and licensed" within the country.

While market factors vary by geography, it is crucial to have a global understanding of the industry, because research advances, clinical trial findings, and technology advances do not know international boundaries. The cord blood market is global in nature and understanding dynamics within your region is not sufficient for making strategic, informed, and profitable decisions.

Highlights of the Report

This report presents the number of cord blood units stored in inventory by the largest cord blood banks worldwide and the number of cord blood units (CBUs) released by registries across the world for hematopoietic stem cell (HSC) transplantation. Although cord blood is now used to treat more than 80 different diseases, this number could substantially expand if applications related to regenerative medicine start receiving approvals in major healthcare markets worldwide.

Overall, the report provides the reader with the following details and answers the following questions:

  • 1. Number of cord blood units cryopreserved in public and private cord blood banks globally
  • 2. Number of hematopoietic stem cell transplants (HSCTs) globally using cord blood cells
  • 3. Utilization of cord blood cells in clinical trials for developing regenerative medicines
  • 4. The decline of the utilization of cord blood cells in HSC transplantations since 2005
  • 5. Emerging technologies to influence financial sustainability of public cord blood banks
  • 6. The future scope for companion products from cord blood
  • 7. The changing landscape of cord blood cell banking market
  • 8. Extension of services by cord blood banks
  • 9. Types of cord blood banks
  • 10. Economic model of public cord blood banks
  • 11. Cost analysis for public cord blood banks
  • 12. Economic model of private cord blood banks
  • 13. Cost analysis for private cord blood banks
  • 14. Profit margins for private cord blood banks
  • 15. Pricing for processing and storage in private banks
  • 16. Rate per cord blood unit in the U.S. and Europe
  • 17. Indications for the use of cord blood-derived HSCs for transplantations
  • 18. Diseases targeted by cord blood-derived MSCs in regenerative medicine
  • 19. Cord blood processing technologies
  • 20. Number of clinical trials, number of published scientific papers and NIH funding for cord blood research
  • 21. Transplantation data from different cord blood registries

Key questions answered in this report are:

  • 1. What are the strategies being considered for improving the financial stability of public cord blood banks?
  • 2. What are the companion products proposed to be developed from cord blood?
  • 3. How much is being spent for processing and storing a unit of cord blood?
  • 4. How much does a unit of cryopreserved cord blood unit fetch on release?
  • 5. Why do most public cord blood banks incur a loss?
  • 6. What is the net profit margin for a private cord blood bank?
  • 7. What are the prices for processing and storage of cord blood in private cord blood banks?
  • 8. What are the rates per cord blood units in the U.S. and Europe?
  • 9. What are the revenues from cord blood sales for major cord blood banks?
  • 10. Which are the different accreditation systems for cord blood banks?
  • 11. What are the comparative merits of the various cord blood processing technologies?
  • 12. What is to be done to increase the rate of utilization of cord blood cells in transplantations?
  • 13. Which TNC counts are preferred for transplantation?
  • 14. What is the number of registered clinical trials using cord blood and cord tissue?
  • 15. How many clinical trials are involved in studying the expansion of cord blood cells in the laboratory?
  • 16. How many matching and mismatching transplantations using cord blood units are performed on an annual basis?
  • 17. What is the share of cord blood cells used for transplantation from 2000 to 2020?
  • 18. What is the likelihood of finding a matching allogeneic cord blood unit by ethnicity?
  • 19. Which are the top ten countries for donating cord blood?
  • 20. What are the diseases targeted by cord blood-derived MSCs within clinical trials?

With an online readership of nearly one million viewers per year, BioInformant is a U.S. market research firm with 15 years of experience. As the first and only market research firm to specialize in the stem cell industry, BioInformant research has been cited by the Wall Street Journal, Xconomy, and Vogue Magazine. Headquartered in Washington, DC, BioInformant is strategically positioned to be near the National Institutes of Health (NIH), the U.S. FDA, the Maryland Biotech Corridor, and policy makers on Capital Hill.

Table of Contents

TABLE OF CONTENTS

1. REPORT OVERVIEW

  • 1.1 Statement of the Report
  • 1.2 Executive Summary
  • 1.3 Introduction
    • 1.3.1 Cord Blood: An Alternative Source for HPSCs
    • 1.3.2 Utilization of Cord Blood Cells in Clinical Trials
    • 1.3.3 The Struggle of Cord Blood Banks
    • 1.3.4 Emerging Technologies to Influence Financial Sustainability of Banks
      • 1.3.4.1 Other Opportunities to Improve Financial Stability
      • 1.3.4.2 Scope for Companion Products
    • 1.3.5 Changing Landscape of Cord Blood Cell Banking Market
    • 1.3.6 Extension of Services by Cord Blood Banks

2. CORD BLOOD & CORD BLOOD BANKING: AN OVERVIEW

  • 2.1 Cord Blood Banking (Stem Cell Banking)
    • 2.1.1 Public Cord Blood Banks
      • 2.1.1.1 Economic Model of Public Cord Blood Banks
      • 2.1.1.2 Cost Analysis for Public Banks
      • 2.1.1.3 Relationship between Costs and Release Rates
    • 2.1.2 Private Cord Blood Banks
      • 2.1.2.1 Cost Analysis for Private Cord Blood Banks
      • 2.1.2.2 Economic Model of Private Banks
    • 2.1.3 Hybrid Cord Blood Banks
  • 2.2 Globally Known Cord Blood Banks
    • 2.2.1 Comparing Cord Blood Banks
    • 2.2.2 Cord Blood Banks in the U.S.
    • 2.2.3 Proportion of Public, Private and Hybrid Banks
  • 2.3 Percent Share of Parents of Newborns Storing Cord Blood by Country/Region
  • 2.4 Pricing for Processing and Storage in Commercial Banks
    • 2.4.1 Rate per Cord Blood Unit in the U.S. and Europe
  • 2.5 Cord Blood Revenues for Major Cord Blood Banks

3. CORD BLOOD BANK ACCREDITATIONS

  • 3.1 American Association of Blood Banks (AABB)
  • 3.2 Foundation for the Accreditation of Cellular Therapy (FACT)
  • 3.3 FDA Registration
  • 3.4 FDA Biologics License Application (BLA) License
  • 3.5 Investigational New Drug (IND) for Cord Blood
  • 3.6 Human Tissue Authority (HTA)
  • 3.7 Therapeutic Goods Act (TGA) in Australia
  • 3.8 International NetCord Foundation
  • 3.9 AABB Accredited Cord Blood Facilities
  • 3.10 FACT Accreditation for Cord Blood Banks

4. APPLICATIONS OF CORD BLOOD CELLS

  • 4.1 Hematopoietic Stem Cell Transplantations with Cord Blood Cells
  • 4.2 Cord Cells in Regenerative Medicine

5. CORD BLOOD PROCESSING TECHNOLOGIES

  • 5.1 The Process of Separation
    • 5.1.1 PrepaCyte-CB
    • 5.1.2 Advantages of PrepaCyte-CB
    • 5.1.3 Treatment Outcomes with PrepaCyte-CB
    • 5.1.4 Hetastarch (HES)
    • 5.1.5 AutoXpress (AXP)
    • 5.1.6 SEPAX
    • 5.1.7 Plasma Depletion Method (MaxCell Process)
    • 5.1.8 Density Gradient Method
  • 5.2 Comparative Merits of Different Processing Methods
    • 5.2.1 Early Stage HSC Recovery by Technologies
    • 5.2.2 Mid Stage HSC (CD34+/CD133+) Recovery from Cord Blood
    • 5.2.3 Late Stage Recovery of HSCs from Cord Blood
  • 5.3 HSC (CD45+) Recovery
  • 5.4 Days to Neutrophil Engraftment by Technology
  • 5.5 Anticoagulants used in Cord Blood Processing
    • 5.5.1 Type of Anticoagulant and Cell Recovery Volume
    • 5.5.2 Percent Cell Recovery by Sample Size
    • 5.5.3 TNC Viability by Time Taken for Transport and Type of Anticoagulant
  • 5.6 Cryopreservation of Cord Blood Cells
  • 5.7 Bioprocessing of Umbilical Cord Tissue (UCT)
  • 5.8 A Proposal to Improve the Utilization Rate of Banked Cord Blood

6. CORD BLOOD CLINICAL TRIALS, SCIENTIFIC PUBLICATIONS & NIH FUNDING

  • 6.1 Cord Blood Cells for Research
  • 6.2 Cord Blood Cells for Clinical Trials
    • 6.2.1 Number of Clinical Trials involving Cord Blood Cells
    • 6.2.2 Number of Clinical Trials using Cord Blood Cells by Geography
    • 6.2.3 Number of Clinical Trials by Study Type
    • 6.2.4 Number of Clinical Trials by Study Phase
    • 6.2.5 Number of Clinical Trials by Funder Type
    • 6.2.6 Clinical Trials Addressing Indications in Children
    • 6.2.7 Select Three Clinical Trials Involving Children
      • 6.2.7.1 Sensorineural Hearing Loss (NCT02038972)
      • 6.2.7.2 Autism Spectrum (NCT02847182)
      • 6.2.7.3 Cerebral Palsy (NCT01147653)
    • 6.2.8 Clinical Trials for Neurological Diseases using Cord Blood and Cord Tissue
    • 6.2.9 UCB for Diabetes
    • 6.2.10 UCB in Cardiovascular Clinical Trials
    • 6.2.11 Cord Blood Cells for Auto-Immune Diseases in Clinical Trials
    • 6.2.12 Cord Tissue Cells for Orthopedic Disorders in Clinical Trials
    • 6.2.13 Cord Blood Cells for Other Indications in Clinical Trials
  • 6.3 Major Diseases Addressed by Cord Blood Cells in Clinical Trials
  • 6.4 Clinical Trials using Cord Tissue-Derived MSCs
  • 6.5 Ongoing Clinical Trials using Cord Tissue
    • 6.5.1 Cord Tissue-Based Clinical Trials by Geography
    • 6.5.2 Cord Tissue-Based Clinical Trials by Phase
    • 6.5.3 Cord Tissue-Based Clinical Trials by Sponsor Types
    • 6.5.4 Companies Sponsoring in Trials using Cord Tissue-Derived MSCs
  • 6.6 Wharton's Jelly-Derived MSCs in Clinical Trials
    • 6.6.1 Wharton's Jelly-Based Clinical Trials by Phase
    • 6.6.2 Companies Sponsoring Wharton's Jelly-Based Clinical Trials
  • 6.7 Clinical Trials Involving Cord Blood Expansion Studies
    • 6.7.1 Safe and Feasible Expansion Protocols
    • 6.7.2 List of Clinical Trials involved in the Expansion of Cord Blood HSCs
    • 6.7.3 Expansion Technologies
  • 6.8 Scientific Publications on Cord Blood
  • 6.9 Scientific Publications on Cord Tissue
  • 6.10 Scientific Publications on Wharton's Jelly-Derived MSCs
  • 6.11 Published Scientific Papers on Cord Blood Cell Expansion
  • 6.12 NIH Funding for Cord Blood Research

7. PARENT'S AWARENESS AND ATTITUDE TOWARDS CORD BLOOD BANKING

  • 7.1 Undecided Expectant Parents
  • 7.2 The Familiar Cord Blood Banks Known by the Expectant Parents
  • 7.3 Factors Influencing the Choice of a Cord Blood Bank

8. CORD BLOOD: AS A TRANSPLANTATION MEDICINE

  • 8.1 Comparisons of Cord Blood to other Allograft Sources
    • 8.1.1 Major Indications for HCTs in the U.S.
    • 8.1.2 Trend in Allogeneic HCT in the U.S. by Recipient Age
    • 8.1.3 Trends in Autologous HCT in the U.S. by Recipient Age
  • 8.2 HCTs by Cell Source in Adult Patients
    • 8.2.1 Transplants by Cell Source in Pediatric Patients
  • 8.3 Allogeneic HCTs by Cell Source
    • 8.3.1 Unrelated Donor Allogeneic HCTs in Patients <18 Years
  • 8.4 Likelihood of Finding an Unrelated Cord Blood Unit by Ethnicity
    • 8.4.1 Likelihood of Finding an Unrelated Cord Blood Unit for Patients <20 Years
  • 8.5 Odds of using a Baby's Cord Blood
  • 8.6 Cord Blood Utilization Trends
  • 8.7 Number of Cord Blood Donors Worldwide
    • 8.7.1 Number of CBUs Stored Worldwide
    • 8.7.2 Cord Blood Donors by Geography
      • 8.7.2.1 Cord Blood Units Stored in Different Geographies
      • 8.7.2.2 Number of Donors by HLA Typing
    • 8.7.3 Searches Made by Transplant Patients for Donors/CBUs
    • 8.7.4 Types of CBU Shipments (Single/Double/Multi)
    • 8.7.5 TNC Count of CBUs Shipped for Children and Adult Patients
    • 8.7.6 Shipment of Multiple CBUs
    • 8.7.7 Percent Supply of CBUs for National and International Patients
    • 8.7.8 Decreasing Number of CBU Utilization
  • 8.8 Top Ten Countries in Cord Blood Donation
    • 8.8.1 HLA Typed CBUs by Continent
    • 8.8.2 Percentage TNC of Banked CBUs
    • 8.8.3 Total Number of CBUs, HLA-Typed Units by Country
  • 8.9 Cord Blood Export/Import by the E.U. Member States
    • 8.9.1 Number of Donors and CBUs in Europe
    • 8.9.2 Number of Exports/Imports of CBUs in E.U.
  • 8.10 Global Exchange of Cord Blood Units

9. CORD BLOOD CELLS AS THERAPEUTIC CELL PRODUCTS IN CELL THERAPY

  • 9.1 MSCs from Cord Blood and Cord Tissue
    • 9.1.1 Potential Neurological Applications of Cord Blood-Derived Cells
    • 9.1.2 Cord Tissue-Derived MSCs for Therapeutic use
      • 9.1.2.1 Indications Targeted by UCT-MSCs in Clinical Trials
  • 9.2 Current Consumption of Cord Blood Units by Clinical Trials
  • 9.3 Select Cord Blood Stem Cell Treatments in Clinical Trials
    • 9.3.1 Acquired Hearing Loss (NCT02038972)
    • 9.3.2 Autism (NCT02847182)
    • 9.3.3 Cerebral Palsy (NCT03087110)
    • 9.3.4 Hypoplastic Left Heart Syndrome (NCT01856049)
    • 9.3.5 Type 1 Diabetes (NCT00989547)
    • 9.3.6 Psoriasis (NCT03765957)
    • 9.3.7 Parkinson's Disease (NCT03550183)
    • 9.3.8 Signs of Aging (NCT04174898)
    • 9.3.9 Stroke (NCT02433509)
    • 9.3.10 Traumatic Brain Injury (NCT01451528)

10. MARKET ANALYSIS

  • 10.1 Public vs. Private Cord Blood Banking Market
  • 10.2 Cord Blood Banking Market by Indication

11. PROFILES OF SELECT CORD BLOOD BANKS AND COMPANIES

  • 11.1 AllCells
    • 11.1.1 Whole Blood
    • 11.1.2 Leukopak
    • 11.1.3 Mobilized Leukopak
    • 11.1.4 Bone Marrow
    • 11.1.5 Cord Blood
  • 11.2 AlphaCord LLC
    • 11.2.1 NextGen Collection System
  • 11.3 Americord Registry, Inc.
    • 11.3.1 Cord Blood 2.0
    • 11.3.2 Cord Tissue
    • 11.3.3 Placental Tissue 2.0
  • 11.4 Be The Match
    • 11.4.1 Hub of Transplant Network
    • 11.4.2 Partners of Be The Match
    • 11.4.3 Allogeneic Cell Sources in Be The Match Registry
    • 11.4.4 Likelihood of a Matched Donor on Be The Match by Ethnic Background
  • 11.5 Biocell Center Corporation
    • 11.5.1 Chorionic villi after Delivery
    • 11.5.2 Amniotic Fluid and Chorionic Villi during Pregnancy
  • 11.6 BioEden Group, Inc.
    • 11.6.1 Differences between Tooth Cells and Umbilical Cord Cells
  • 11.7 Biovault Family
    • 11.7.1 Personalized Cord Blood Processing
  • 11.8 Cell Care
  • 11.9 Cells4Life Group, LLP
    • 11.9.1 Cells4Life's pricing
    • 11.9.2 TotiCyte Technology
    • 11.9.3 Cord Blood Releases
  • 11.10 Cell-Save
  • 11.11 Center for International Blood and Marrow Transplant Research (CIBMTR)
    • 11.11.1 Global Collaboration
    • 11.11.2 Scientific Working Committees
    • 11.11.3 Medicare Clinical Trials and Studies
    • 11.11.4 Cellular Therapy
  • 11.12 Crio-Cell International, Inc.
    • 11.12.1 Advanced Collection Kit
    • 11.12.2 Prepacyte-CB
    • 11.12.3 Crio-Cell International's Pricing
    • 11.12.4 Revenue for Crio-Cell International
  • 11.13 Cord Blood Center Group
    • 11.13.1 Cord Blood Units Released
  • 11.14 Cordlife Group, Ltd.
    • 11.14.1 Cordlife's Cord Blood Release Track Record
  • 11.15 Core23 Biobank
  • 11.16 Cord Blood Registry (CBR)
  • 11.17 CordVida
  • 11.18 Crioestaminal
    • 11.18.1 Cord Blood Transplantation in Portugal
  • 11.19 Cryo-Cell International, Inc.
    • 11.19.1 Processing Method
    • 11.19.2 Financial Results of the Company
  • 11.20 CryoHoldco
  • 11.21 Cryoviva Biotech Pvt. Ltd
  • 11.22 European Society for Blood and Bone Marrow Transplantation (EBMT)
    • 11.22.1 EBMT Transplant Activity
  • 11.23 FamiCord Group
  • 11.24 GeneCell International
  • 11.25 Global Cord Blood Corporation
    • 11.25.1 The Company's Business
  • 11.26 HealthBaby Hong Kong
    • 11.26.1 BioArchive System Service Plan
    • 11.26.2 MVE Liquid Nitrogen System
  • 11.27 HEMAFUND
  • 11.28 Insception Lifebank
  • 11.29 LifebankUSA
    • 11.29.1 Placental Banking
  • 11.30 LifeCell International Pvt. Ltd.
  • 11.31 MiracleCord, Inc.
  • 11.32 Maze Cord Blood Laboratories
  • 11.33 New England Cord Blood Bank, Inc.
  • 11.34 New York Cord Blood Center (NYBC)
    • 11.34.1 Products
    • 11.34.2 Laboratory Services
  • 11.35 PacifiCord
    • 11.35.1 FDA-Approved Sterile Collection Bags
    • 11.35.2 AXP Processing System
    • 11.35.3 BioArchive System
  • 11.36 ReeLabs Pvt. Ltd.
  • 11.37 Smart Cells International, Ltd.
  • 11.38 Stem Cell Cryobank
  • 11.39 StemCyte, Inc.
    • 11.39.1 StemCyte Sponsored Clinical Trials
      • 11.39.1.1 Spinal Cord Injury Phase II
      • 11.39.1.2 Other Trials
  • 11.40 Transcell Biolife
    • 11.40.1 ScellCare
    • 11.40.2 ToothScell
  • 11.41 ViaCord
  • 11.42 Vita 34 AG
  • 11.43 World Marrow Donor Association (WMDA)
    • 11.43.1 Search & Match Service
  • 11.44 Worldwide Network for Blood & Marrow Transplantation (WBMT)

INDEX OF FIGURES

  • Figure 2.1: Profit Margins of Select Private Cord Blood Banks
  • Figure 2.2: Cord Blood Banks by Size of Inventory
  • Figure 2.3: Proportion of Public, Private and Hybrid Banks
  • Figure 2.4: Percent Share of Parents of Newborns Storing Cord Blood by Country/Region
  • Figure 2.5: Cord Blood Revenues for Companies
  • Figure 3.1: Percent Share of AABB Accredited Cord Blood Facilities by Country
  • Figure 5.1: Separation of Buffy Layer
  • Figure 5.2: PrepaCyte-CB
  • Figure 5.3: Hetastarch (HES)
  • Figure 5.4: AutoXpress II
  • Figure 5.5: SEPAX 2
  • Figure 5.6: Plasma Depletion (PD) Method (MaxCell Process)
  • Figure 5.7: Density Gradient Separation of Cord Blood
  • Figure 5.8: Early Stage HSC Recovery from Cord Blood by Technologies
  • Figure 5.9: Mid Stage HSC (CD34+/CD133+) Recovery from Cord Blood by Technologies
  • Figure 5.10: Late Stage HSC Recovery from Cord Blood by Technologies
  • Figure 5.11: HSC (CD45+) Recovery Post Process from Whole Blood by Technologies
  • Figure 5.12: Days to Neutrophil Engraftment by Technology
  • Figure 5.13: Difference in TNC Recovery among Anticoagulants
  • Figure 5.14: Type of Anticoagulant and Cell Recovery Volume
  • Figure 5.15: Percent Cell Recovery by Sample Size
  • Figure 5.16: TNC Viability by Time Taken for Transport
  • Figure 5.17: Difference in Recovery of Viable TNC after Thawing
  • Figure 5.18: CD34+ Cell Count, CFU and Cell Apoptosis by Cryoprotectants
  • Figure 5.19: The Number of Stored and Transplanted CB Units in Korea-CORD by TNC
  • Figure 5.20: Number of Stored and Shipped CB Units and Utilization Rate by TNC Count
  • Figure 6.1: Number of Clinical Trials as Reported in PubMed.gov from 2000 to 2019
  • Figure 6.2: Number of Cord Blood Clinical Trials by Geography
  • Figure 6.3: Number of Cord Blood Clinical Trials by Study Type
  • Figure 6.4: Number of Cord Blood Clinical Trials by Study Phase
  • Figure 6.5: Number of Cord Blood Clinical Trials by Funder Type
  • Figure 6.6: Percent Share of Indications in Children tested in Clinical Trials
  • Figure 6.7: Percent Share of Diseases in Ongoing Clinical Trials using Cord Blood Cells
  • Figure 6.8: Percent Share of Diseases in Clinical Trials using MSCs from Cord Tissue
  • Figure 6.9: Number of Cord Tissue-Based Clinical Trials by Geography
  • Figure 6.10: Cord Tissue-Based Clinical Trials by Study Phase
  • Figure 6.11: Cord Tissue-Based Clinical Trials by Funder Type
  • Figure 6.12: Wharton's Jelly-Based Clinical Trials by Study Phase
  • Figure 6.13: Number of Published Scientific Papers on UCB, 2000 - 2020
  • Figure 6.14: Number of Published Scientific Papers on Cord Tissue, 2000 - 2020
  • Figure 6.15: Number of Published Scientific Papers on Wharton's Jelly, 2000 - 2020
  • Figure 6.16: Number of Published Scientific Papers on Cord Blood Expansion
  • Figure 7.1: Percent Expectant Parents who have heard about Cord Blood Banking
  • Figure 7.2: Undecided Expectant Parents about Cord Blood Banking
  • Figure 7.3: The Familiar Cord Blood Banks Known by the Expectant Parents
  • Figure 7.4: Factors Influencing the Choice of a Cord Blood Bank
  • Figure 8.1: Distribution of Cell Sources in HCTs as Reported in Be The Match, 2019
  • Figure 8.2: Comparisons of Cord Blood to other Allograft Sources
  • Figure 8.3: Major Indications for HTC in the U.S., 2019
  • Figure 8.4: Trend in Allogeneic HCT in the U.S. by Recipient Age, 2000 - 2018
  • Figure 8.5: Trends in Autologous HCT in the U.S. by Recipient Age, 2000 - 2018
  • Figure 8.6: Transplants by Cell Source in Adult Patients, 2010-2019
  • Figure 8.7: Transplants by Cell Source in Pediatric Patients <18 Years
  • Figure 8.8: Allogeneic HCTs by Cell Source Facilitated by NMDP/Be The Match
  • Figure 8.9: Unrelated Donor Allogeneic HCTs in Patients <18 Years/NMDP/Be The Match
  • Figure 8.10: Likelihood of Finding an Unrelated Cord Blood Unit by Ethnicity
  • Figure 8.11: Likelihood of Finding an Unrelated Cord Blood Unit for Patients <20 Years
  • Figure 8.12: Cumulative Probability of having a Stem Cell Transplant by Age
  • Figure 8.13: Cord Blood Utilization Trends
  • Figure 8.14: Number of UCB Donors Worldwide as Reported by WMDA
  • Figure 8.15: Number of CBUs Worldwide as Reported by WMDA
  • Figure 8.16: Number of Umbilical Cord Blood Donors by Geography
  • Figure 8.17: Number of Cord Blood Units Stored by Geography
  • Figure 8.18: Percent Shares of all Registered Donors by HLA Typing Level
  • Figure 8.19: Number of Searches Initiated by National Patients for Donors/CBU/Both
  • Figure 8.20: Types of CBU Shipments
  • Figure 8.21: TNC Count of CBUs Provided for Children and Adult Patients - Single
  • Figure 8.22: TNC Count of CBUs Provided for Children and Adult Patients - Multi
  • Figure 8.23: Percentage of HPC Products Provided for National and International Patients
  • Figure 8.25: Top Ten Countries with Number of Donors Listed per 10,000 Inhabitants
  • Figure 8.26: Percentage of HLA Typed CBUs Banked per Continent
  • Figure 8.27: Percentage TNC of Banked CBUs
  • Figure 8.28: Number of Donors per 10,000 Inhabitants by Select E.U. Countries
  • Figure 8.29: Global CBU Shipments by Geography Today
  • Figure 8.30: Global Shipments of CBUs by Geography (Historical Data)
  • Figure 9.1: Percent Shares of Indications Targeted by UCB-MSCs in Clinical Trials
  • Figure 9.2: Percent Share of Clinical Indications using UCT-MSCs
  • Figure 9.3: Number of UCB Units Released by Cord Blood Registry by Application
  • Figure 10.1: Global Cord Blood Banking Market Revenue by Geography
  • Figure 10.2: Percent Share of Global Cord Blood Banking Market Revenue by Geography
  • Figure 10.3: Percent Share of Global Cord Blood Banking Market, Public vs. Private
  • Figure 10.4: Percent Share of Cord Blood Banking Market by Indication
  • Figure 11.1: Growth of CBUs on the Be The Match Registry
  • Figure 11.2: Growth of CBUs on the Be The Match Registry
  • Figure 11.3: Number of Unrelated Donor Transplants Facilitated by NMDP/Be The Match
  • Figure 11.4: Diversity of CBUs in Be The Match Registry
  • Figure 11.5: Cell Sources for Allogeneic HCT Facilitated by Be The Match Registry
  • Figure 11.6: Likelihood of a Matched Donor on Be The Match Registry by Ethnicity
  • Figure 11.7: Percent Recovery of Viable Cells by TotiCyte Technology
  • Figure 11.8: Growth in Number of New Transplant Patients Registered with the CIBMTR
  • Figure 11.9: New Patients per Year Registered with CIBMTR
  • Figure 11.10: Transplant Patients by Graft Source Registered with CIBMTR
  • Figure 11.11: Crio-Cell International's Revenues, 2016-2019
  • Figure 11.12: Number of Cord Blood Units Stored in CBR and its Competitors
  • Figure 11.13: Key Figures of Sales Revenues and Gross Profits for Cordlife, 2014-2019
  • Figure 11.14: Revenue and Gross Profit for GCBC, 2015-2019
  • Figure 11.15: Percent Share of Units Released by Indication
  • Figure 11.16: Key Figures of Sales Revenues and Gross Profits for Vita 34, 2014-2019

INDEX OF TABLES

  • Table 2.1: An Overview of Public Cord Blood Banks
  • Table 2.2: International Prices of Cord Blood Unit
  • Table 2.3: Prices of Cord Blood Units in NMDP Banks in the U.S.
  • Table 2.4: An Overview of Private Cord Blood Banks
  • Table 2.5: Profit Margins of Select Private Cord Blood Banks, 2016-2019
  • Table 2.6: An Overview of Hybrid Cord Blood Banks
  • Table 2.7: A Partial List of Global Private Cord Blood Banks
  • Table 2.8: Comparison of Three Private Banks
  • Table 2.9: Partial List of Public, Private and Hybrid Cord Blood Banks in the U.S.
  • Table 2.10: Pricing for Storage in Commercial Banks
  • Table 2.11: Rate per Cord Blood Unit in the U.S. & Europe
  • Table 2.12: Cord Blood Revenues for the Four Major Companies, 2016-2019
  • Table 3.1: AABB Accredited Cord Blood Facilities
  • Table 3.2: Select FACT Accredited Cord Blood Facilities
  • Table 4.1: Indications for the Use of UCB-Derived Stem Cells for Transplantation
  • Table 4.2: Indications for the Use of UCB-Derived Stem Cells for Regenerative Medicine
  • Table 5.1: Advantages of PrepaCyte-CB
  • Table 5.2: Treatment Outcomes with PrepaCyte-CB
  • Table 6.1: U.S. Cord Blood Banks Supplying Cord Blood for Research
  • Table 6.2: Number of Cord Blood Clinical Trials by Geography
  • Table 6.3: Number of Cord Blood Clinical Trials by Study Type
  • Table 6.4: Number of Cord Blood Clinical Trials by Study Phase
  • Table 6.5: Number of Cord Blood Clinical Trials by Funder Type
  • Table 6.6: Percent Share of Indications in Children tested in Clinical Trials
  • Table 6.7: Select Three Clinical Trials involving Children
  • Table 6.8: Ongoing Clinical Trials using UCB for Neurological Diseases
  • Table 6.9: Ongoing Clinical Trials using UCB for Diabetes
  • Table 6.10: Ongoing Clinical Trials using UCB for Cardiovascular Trials
  • Table 6.11: Ongoing Clinical Trials using UCB for Auto-Immune Diseases
  • Table 6.12: Ongoing Clinical Trials using UCB for Orthopedic Disorders
  • Table 6.13: Ongoing Clinical Trials using UCB for Other Indications
  • Table 6.14: Select Clinical Trials using MSCs from Cord Tissue
  • Table 6.15: Number of Cord Tissue-Based Clinical Trials by Geography
  • Table 6.16: Number of Cord Tissue-Based Clinical Trials by Study Phase
  • Table 6.17: Number of Cord Tissue-Based Clinical Trials by Funder Type
  • Table 6.18: Select Cord Tissue-Based Clinical Trials by Commercial Entities, 2020
  • Table 6.19: Wharton's Jelly-Based Clinical Trials by Phase, 2020
  • Table 6.20: Wharton's Jelly-Based Clinical Trials by Commercial Entities
  • Table 6.21: Clinical Trials in Cord Blood-Derived Cell Expansion by Country, 2020
  • Table 6.22: Clinical Trials of Cell Expansion Studies by Stages in Development, 2020
  • Table 6.23: List of Clinical Trials involved in the Expansion of Cord Blood HSCs
  • Table 6.24: Cord Blood Expansion Approaches
  • Table 6.25: Select NIH Funding for Umbilical Cord Blood Research, 2019-2020
  • Table 8.1: Comparisons of Cord Blood to other Allograft Sources in Transplantation
  • Table 8.2: Number of HCTs Performed in the U.S. as reported to CIBMTR by Disease
  • Table 8.3: Total Number of Cord Blood Donors and Cord Blood Units by Country
  • Table 8.4: Number of Donors and CBUs by E.U. Country
  • Table 8.5: Number of Exports/Imports of CBUs in the E.U.
  • Table 9.1: Select 15 Clinical Trials Using Cord Blood-Derived MSCs as Interventions
  • Table 9.2: Select Clinical Trials using UCT-MSCs as Interventions
  • Table 10.1: Global Cord Blood Banking Market Revenue by Geography
  • Table 11.1: AlphaCord's pricing
  • Table 11.2: Cell Care's pricing for Processing and Storage
  • Table 11.3: Cells4Life's pricing for Cord Blood, Cord Tissue, Amnion and Placental Cells
  • Table 11.4: Cord Blood and Cord Tissue Products Released from Cells4Life
  • Table 11.5: Distribution of Transplant Patients by Graft Source Registered with CIBMTR
  • Table 11.6: Distribution of Transplant Patients by Indication Registered with CIBMTR
  • Table 11.7: Cryo-Cell International's Pricing for Processing and Storage
  • Table 11.8: Cryo-Cell International's Revenues, 2016-2019
  • Table 11.9: Cord Blood Units Released from Cord Blood Center Group
  • Table 11.10: Cordlife's Cord Blood Release Track Record
  • Table 11.11: Core23 Biobank's Processing and Storage Fees
  • Table 11.12: Allogeneic and Autologous Transplantations by Indication Reported in EBMT
  • Table 11.13: GeneCell Internationals Prepaid Storage Plans
  • Table 11.14: Selected Financial Data for Global Cord Blood Corporation (GCBC), 2015-2019
  • Table 11.15: Insception Lifebank's Pricing
  • Table 11.16: LifeCell International's pricing
  • Table 11.17: MiracleCord's Cost Comparison with Competitors
  • Table 11.18: Maze Cord Blood Laboratory's Payment Plans
  • Table 11.19: Comparison of Pricing of NECBB with others
  • Table 11.20 Stem Cell Cryobank's Pricing for Processing and Storage
Back to Top