Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1279707

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1279707

Global Cell Surface Markers Detection Market - 2023-2030

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

The global cell surface markers detection market size reached US$ 4,976.5 million in 2022 and is projected to witness lucrative growth by reaching up to US$ 9,522.6 million by 2030. The market is exhibiting at a CAGR of 8.7% during the forecast period (2023-2030).

The cell surface marker is used to separate fluorescent cells by flow cytometry by using a specific membrane protein (i.e., surface marker) bound by a specific antibody. The cell surface markers used for the identification and purification of human HSCs by fluorescence-activated cell sorting (FACS) analysis incorporate a number of clusters of differentiation (CD) markers. The most primitive human HSC is identified as CD34+CD90+, while other groups have identified it as CD34+CD38.

Absent expression of CD45RA has also been used in combination with the above markers for the identification of primitive HSCs. Human multipotent progenitor cells are identified as LinCD34+CD38CD90c-kitloflt3loCD133+CD45RA. Differentiated progeny of CMP (erythrocytes, granulocytes, megakaryocytes, and macrophages) and CLP (B cell, T cell, NK cell) is identified by the presence of lineage-specific markers in FACS analysis. For Instance, B- lymphocytes are CD45+CD20+CD24+, T-lymphocytes are CD45+CD3+, megakaryocytes are CD42b+, granulocytes are CD45+CD15+CD24+CD114+CD182+, and macrophages are CD45+CD68+.

Market Dynamics

Increased Diagnostics, Demand For Precision Medicine, And Technological Advancements Drive The Market Growth

Precision medicine is a concept that aims to align medical care with the molecular and environmental factors of certain patient groups. Biomarker-supported therapy is an essential sub-discipline of precision medicine, which includes driver mutations, protein expression, mRNA, MSI (microsatellite instability), tumor mutational burden (TMB), and epigenetic biomarkers. Biomarkers are DNA-, mRNA-, or protein-based and include driver mutations, protein expression, mRNA, MSI, tumor mutational burden (TMB), and epigenetic biomarkers.

Flow Cytometry, Immunohistochemistry (IHC), and Next Generation Sequencing (RNA Sequencing) are methods used to identify or diagnose the cell surface markers in a population. RNA-Seq uses next-generation sequencing to sequence cDNA in parallel to create large amounts of data showing the sequence of base pairs found in RNA fragments. Increased and quick diagnostics for cell surface markers detection drives the market.

High Cost of the Instruments

Expensive instruments like flow cytometry and their complexity are the main reasons to hamper the market growth. The cost of the flow cytometry varies from region but it is very expensive. For instance, some manufacturers, such as Sony, are beginning to build flow cytometer instruments that cost under $100,000, but it's still possible to spend anywhere from $100,000 to $500,000 for a single unit. So, this is the main factor hindering the market growth of cell surface markers detection.

COVID-19 Impact Analysis

The COVID-19 pandemic is expected to have a significant impact on the market, as cell surface markers are attached to the cell membrane and play a crucial role in intercellular signaling. Research projects are being conducted that involve the interaction of COVID-19 antibodies with cell surface markers, such as comparing the cell surface marker expression on monocytes of COVID-19 patients with healthy controls.

This study found an increased rate of fungal co-infections in COVID-19 patients, leading to a better understanding of the disease and innovative ways to find a cure. The cell surface markers are also used to study the effect of COVID-19 during the pandemic.

Russia-Ukraine Conflict Analysis

The Russia-Ukraine Conflict has caused negative impacts globally, particularly in Eastern Europe, the European Union, Eastern & Central Asia, and the United States. It is expected to have an adverse impact on Ukraine and long-term effects on Russia. Due to the wars, implications for demand-supply balances, pricing variants, import/export and trading, short-term impact can be seen in the cell surface markers detection market.

Segment Analysis

The global cell surface markers detection market is segmented by product and by application.

Flow Cytometry Segment is Expected to dominate the market growth

Flow cytometry is a technique used to detect the presence of cell types within a population by passing single cells through a highly focused laser. Antibodies specific to cell surface markers of interest are added to a sample and allowed to bind to the cells. These antibodies are conjugated to fluorochromes which emit light at various wavelengths. The population of cells is then passed through a laser, exciting the fluorochromes and capturing the light emitted.

The cells are then sorted into subpopulations based on the markers present through a series of histograms and dot plots called a gating strategy. Flow cytometry allows for multiple cell surface markers on a cell to be detected, but nonspecific binding and spectral overlap can become a limitation. Flow cytometry also does not allow for the spatial aspect of a sample to be analyzed as the cells are suspended and fed through the laser one at a time. The flow cytometry segment holds about 37.6% of the total cell surface markers market in the forecast period owing to its multiple advantages in analysing cell surface markers.

Geographical Analysis

The Strong Presence Of The Clinical Research Sector And Increased Awareness About Cell Surface Markers

The North America region holds the largest share of the global cell surface markers detection market accounting for approximately 39.7% in the forecast period owing to the strong presence of the clinical research sector in the region's developed economies. The presence of leading players in the medical research sector has elevated the medical research sector in North America and the strong presence of cellular researchers in North America is likely to be a major driver for the market. The increased awareness about the cell surface markers is more likely to drive the market in North America.

Competitive Landscape

The major global players in the market include: BD, Nihon Kohden Corporation, Sysmex Corporation, Thermo Fisher Scientific, Grifols, Bio Rad Laboratories Inc., Agilent Technologies Inc., Nexcelom Bioscience LLC, Beckman Coulter Inc., IVD Medical Holding Limited (Immucor Inc.), and Luminex Corporation.

Why Purchase the Report?

  • To visualize the global cell surface markers detection market segmentation based on product, application, and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of cell surface markers detection market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global Cell Surface Markers Detection Market report would provide approximately 54 tables, 46 figures, and 195 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: MD3902

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Product
  • 3.2. Snippet by Application
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increased Diagnostics, Demand for Precision Medicine, and Technological Advancements
    • 4.1.2. Restraints
      • 4.1.2.1. High Cost of the Instruments
    • 4.1.3. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Post COVID-19 or Future Scenario
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During the Pandemic
  • 6.5. Manufacturer's Strategic Initiatives
  • 6.6. Conclusion

7. By Product

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 7.1.2. Market Attractiveness Index, By Product
  • 7.2. Flow Cytometry*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Hematology Analyzers
  • 7.4. Cell Imaging Systems
  • 7.5. Reagents and Kits
  • 7.6. Others

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Disease Diagnosis And Identifications*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Research And Drug Discovery
  • 8.4. Others

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. The U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. The U.K.
      • 9.3.5.3. France
      • 9.3.5.4. Italy
      • 9.3.5.5. Spain
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Product
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. BD*
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. Nihon Kohden Corporation
  • 11.3. Sysmex Corporation
  • 11.4. Thermo Fisher Scientific
  • 11.5. Nexcelom Bioscience LLC
  • 11.6. Beckman Coulter Inc.
  • 11.7. Qiagen NV
  • 11.8. IVD Medical Holding Limited (Immucor Inc.)
  • 11.9. Agilent Technologies Inc.
  • 11.10. Luminex Corporation.

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!