PUBLISHER: DataM Intelligence | PRODUCT CODE: 1360042
PUBLISHER: DataM Intelligence | PRODUCT CODE: 1360042
Global Micro Integrated Circuits Market reached US$ 78.9 billion in 2022 and is expected to reach US$ 87.6 billion by 2030, growing with a CAGR of 6.5% during the forecast period 2023-2030.
Micro ICs are designed to be smaller and more compact while integrating increasingly complex functionality. As developments in technology manufacturers incorporate more transistors and components onto a single chip which leads to improved performance of electronic devices. The need for micro ICs is driven by the rise in popularity of consumer electronics including smartphones, tablets, wearable technology and smart appliances.
For instance, on 7 August 2023, Sandia National Laboratories, based in Albuquerque, developed a novel silicon-integrated micro-laser that offers promising applications in various fields and this micro-laser when combined with other micro-scale optical devices, which makes it valuable for self-driving cars, data centers, biochemical sensors and defense technologies.
North America is expected to hold about 1/4th of the global market in 2022. Leading semiconductor businesses and academic institutions are all discovered in North America. The creation of more patent and effective micro ICs is driven by ongoing improvements in IC design, fabrication techniques and materials. Consumer electronics, such as smartphones, tablets, gaming consoles and smart home devices are in high demand. All of these products must have micro ICs and their ongoing evolution stimulates growth.
Micro ICs are characterized by their small size and compact design. As 5G infrastructure requires a dense network of small cells and antennas, the miniaturization of components including ICs, is essential to fit within these compact installations. 5G networks demand higher power efficiency to ensure that small cells and devices can operate effectively. Micro ICs are designed to minimize power consumption and for maintaining high-performance applications.
For instance, on 23 February 2023, AMD's strategic focus on 5G technology and investments in the telecommunications sector are aimed at expanding its presence in the data center and networking markets. The company recognizes the increasing demand for high-performance computing and connectivity in these sectors. As 5G networks continue to evolve, communication service providers are seeking to modernize their platforms and leverage the opportunities presented by 5G services.
Collaborations often involve combining expertise and resources to develop cutting-edge micro ICs. Partnerships allow access to complementary technologies and knowledge, fostering innovation Collaborative efforts enable the sharing of development costs, reducing the financial burden on individual companies and this encourages more extensive research and development in micro ICs. Partnerships can help companies enter new markets or expand their presence in existing ones. Access to a partner's distribution channels and customer base can accelerate market penetration.
For instance, on 24 June 2023, India-US tech partnership encompasses various crucial areas such as micro-chips, space and AI. The significance of this partnership is evident as it takes precedence in the joint statement, highlighting its importance above other aspects like defense, space, geopolitics, trade and the economy. For the development in the design of chips and fabrication capabilities Prime Minister Narender Modi signed MoU for the supply chain of the semiconductors.
As there is development in technology, it becomes easier to make smaller and compact integrated circuits, which enables the creation of more potent, energy-saving gadgets. Higher processing power ICs are produced via improvements in microarchitecture and manufacturing techniques, which is essential for applications like artificial intelligence, data analytics and sophisticated computations. As ICs become more energy-efficient, mobile device batteries last longer and varied applications need less power.
For instance, on 24 June 2023, Micron Technology announced its objectives to construct a new assembly and test facility center in Gujarat, India. As this center aims to handle both domestic and international market demands. Micron also aims to expand its global manufacturing units to serve there base customers worldwide and this strategy leads to meet with memory storage across the market.
While miniaturization is an advantage, it also poses challenges. The heat generated in a compact area may be increasingly difficult to dissipate as ICs get smaller and more prone to manufacturing errors. In order to effectively disperse the heat that high-performance ICs produce and prevent overheating extra parts like heat sinks and fans are frequently needed. The manufacturing process for advanced ICs is highly complex and expensive involving numerous intricate steps and this complexity can result in production delays and increased costs.
ICs may be susceptible to difficult-to-detect and-mitigate hardware-level attacks including side-channel attacks and hardware Trojans. The manufacturing of ICs involves the use of hazardous chemicals and materials, contributing to environmental concerns. Global events, such as natural disasters or geopolitical issues, can disrupt the supply chain for ICs, leading to shortages and increased prices.
The global micro integrated circuits market is segmented based on type, application, end-user and region.
In 2022, analog ICs are expected to be the dominant segment in the global market covering around 1/3rd of the market. The ongoing trend of miniaturization enables the development of smaller, more power-efficient and higher-performance analog ICs and this appeals to various industries where space constraints are a concern. The proliferation of smartphones, wearable devices, IoT gadgets and other portable electronics drives the demand for analog.
For instance, on 7 June 2023, X-FAB Silicon Foundries SE, a leading analog/mixed-signal and MEMS foundry group, announced ambitious revenue and margin targets to achieve by 2026. By setting the objective of generating US$ 1.5 billion in sales by 2026, X-FAB demonstrates both its ambitious growth aspirations and dedication to growing its market share.
For different usage of microintegrated circuit, which include automotive, industrial, consumer electronics, medical devices and more, X-FAB specializes in producing silicon wafers. The company is known for its high-quality standards and innovative solutions in analog-digital integrated circuits (mixed-signal ICs), sensors and micro-electro-mechanical systems.
In 2022, Asia-Pacific is expected to be the dominant region in the global micro integrated circuits market covering more than 1/3rd of the market. Asia-Pacific countires, i.e., China, South Korea, Japan and Taiwan, have made the way in technological developments in the semiconductor industry, including the creation of advanced micro ICs for use various industries. The demand for micro ICs utilized in the fabrication of these gadgets has increased as a result of these countries having significant consumer electronics manufacturing hubs.
According to latest official data by ETV Bharat in 2023, there is increment in import of semiconductor in recent years. The value of the nation's imports of monolithic integrated circuits or microchips climbed from INR 37,354 crore in FY 2020-21 to more than 60,000 crore the next year and more than 82,000 crore in FY 2022-23. At the same time micro-chips rise from INR 14,484 to INR 31,000 crores.
The major global players in the market include: Samsung, Qualcomm Technologies, Intel Corporation, Texas Instruments, Toshiba, NVIDIA Corporation, SK Hynix, Micron Technology, Fujitsu and Avago Technologies.
The pandemic disrupted global supply chains, causing shortages of critical components and materials needed for IC manufacturing and this led to delays in production and increased costs. Many semiconductor manufacturing facilities temporarily shut down or reduced production capacity to comply with lockdowns and social distancing measures, this affected the supply of ICs, especially in industries with high demand, such as consumer electronics and healthcare.
The pandemic drove increased demand for certain ICs. For example, the shift to remote work and online activities led to higher demand for laptops, tablets and networking equipment, which rely on microchips. The pandemic disrupted the workforce in semiconductor manufacturing. Some employees fell ill, while others faced restrictions on travel and work and this impacted the ability to maintain and operate manufacturing facilities.
Research and development activities related to new microchip technologies and processes were delayed due to the pandemic. Collaborative research and innovation efforts also faced challenges. The pandemic accelerated the adoption of remote work and collaboration tools within the semiconductor industry. Engineers and designers needed to collaborate virtually on IC design, which presented both challenges and opportunities.
AI algorithms assist in the design and optimization of ICs and also, they can analyze vast datasets and simulations to identify the most efficient circuit layouts, helping engineers create ICs that are smaller, faster and more power-efficient. AI-driven design tools can automate the process of creating IC layouts and these tools can generate and evaluate thousands of design options in a fraction of the time it would take a human designer, leading to faster development cycles.
AI can enhance the testing and quality control of ICs. Machine learning algorithms can identify defects in manufactured ICs by analyzing patterns in test data, improving yield rates and reducing waste. AI-powered predictive maintenance can be used to monitor the health of semiconductor manufacturing equipment. By analyzing sensor data, AI can predict when equipment is likely to fail, reducing downtime and improving production efficiency.
Ukraine is hub for manufacture of several semiconductors and suppliers of electronic components. The war and its associated disruptions, including transportation and logistics challenges, can lead to disruptions in the semiconductor supply chain. The conflict between Russia and Ukraine has led to increased geopolitical tensions may result in shortages of critical components and materials needed for IC manufacturing.
Any disruptions in the supply chain can affect the global pricing and availability of ICs. If certain manufacturers or suppliers in the region are unable to operate or export their products, it may lead to price fluctuations and limited availability of specific ICs. Given the geopolitical uncertainties in the region, semiconductor companies may consider diversifying their manufacturing locations to reduce risk and this could lead to a shift in production away from Ukraine and Russia to other countries, potentially impacting the local economies.
The global micro integrated circuits market report would provide approximately 61 tables, 59 figures and 203 pages.
LIST NOT EXHAUSTIVE