Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1374800

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1374800

Global Bioresorbable Vascular Scaffolds Market -2023-2030

PUBLISHED:
PAGES: 186 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Overview

A bioresorbable vascular scaffold is a newer type of stent used to open up a blocked artery. This stent acts as a temporary scaffold in a blocked artery and slowly dissolves over time as healing completes. This way, no residue gets left in the patient's body.

Bioresorbable scaffolds may offer potential advantages over other technologies. Their superior conformability and flexibility compared with conventional stents reduce altered distribution of the tissue biomechanics and preserve vessel geometry. The 'liberation of the vessel from a metallic cage' can help in the restoration of physiological vasomotion, mechanotransduction, adaptive shear stress, late luminal gain (as opposed to late luminal loss with permanent stents), and late expansive remodelling.

Perhaps, the most significant advantage of bioresorbable vascular scaffolds is that their presence in the patient's body is only temporary. They dissolve over three years and help the vessel return to its natural state. Thus, bioresorbable vascular scaffolds are an excellent option for patients deemed fit for these devices.

Market Dynamics: Drivers and Restraints

Rise in the prevalence of coronary artery diseases

Bioresorbable vascular scaffolds have emerged as a promising alternative to traditional metallic stents in the treatment of coronary artery disease (CAD). As more patients seek treatment for CAD, healthcare providers look for innovative solutions that can provide better outcomes while minimizing risks and complications associated with traditional treatments. BVS design and manufacturing processes are becoming more reliable and effective than ever before due to advancements in technology.

Coronary artery disease is caused by plaque buildup in the wall of the arteries that supply blood to the heart (called coronary arteries). Plaque is made up of cholesterol deposits. Plaque buildup causes the inside of the arteries to narrow over time. This process is called atherosclerosis

For instance, according to the Centers for Disease Control and Prevention updated factsheet 2023, coronary heart disease is the most common type of heart disease, killing 375,476 people in 2021. About 1 in 20 adults age 20 and older have CAD (about 5%).2 In 2021, about 2 in 10 deaths from CAD happen in adults less than 65 years old.

Furthermore, the global bioresorbable vascular scaffolds market is driven by various other factors like new technological advancements, a rise in the adoption of minimally invasive procedures, the launch of novel products in emerging markets, a rise in the geriatric population, an increase in regulatory approvals that will further drive the market during the forecast period.

Market Dynamics: Restraint

Limited clinical evidence the bioresorbable scaffolds market faces a challenge in terms of limited long-term clinical evidence. The outcomes of bioresorbable scaffold implants compared to traditional stents need further evaluation to establish their efficacy and safety conclusively. Another issue is the complex manufacturing process, the intricate manufacturing process of bioresorbable scaffolds contributes to their higher costs.

Segment Analysis

The global bioresorbable vascular scaffolds is segmented based on device type, application, material type, end user and region.

The everolimus-eluting device from the device type segment accounted for approximately 41.2% of the market share

The everolimus-eluting device from the device type segment accounted for 41.2% and it is expected to be dominated during the forecast period. Everolimus-eluting device refers to a medical device that releases everolimus, a drug that inhibits cell proliferation and reduces the risk of restenosis, into the coronary artery wall to prevent re-narrowing of the blood vessel caused by coronary artery disease.

For instance, in June 2022, Shanghai MicroPort Medical (Group) Co., Ltd released the 2-year clinical follow-up results from the pivotal FUTURE II trial of its self-developed, second-generation, fully bioresorbable vascular scaffolds system - Firesorb Bioresorbable Rapamycin Targeted Eluting Coronary Scaffold System.

The FUTURE II trial is a prospective, multi-centre, non-inferiority designed randomized controlled trial comparing the safety and efficacy of the second-generation thinner-strut bioresorbable eluting scaffolds - Firesorb and that of a market-leading everolimus-eluting metallic stent. The FUTURE II trial was conducted at 28 medical centres in China and enrolled a total of 433 patients with obstructive coronary atherosclerotic heart disease.

Moreover, in September 2020 Abbott stated that it started the LIFE-BTK clinical trial for its Espirit BTK everolimus-eluting resorbable scaffold system. According to a news release, Abbott's Espirit system is the first to begin an investigational device exemption (IDE) trial in the U.S. for a fully resorbable device for treating below-the-knee blocked arteries or critical limb ischemia (CLI) in people battling advanced stages of peripheral artery disease (PAD).

Geographical Analysis

North America accounted for approximately 38.4% of the market share in 2022

North America is estimated to hold about 38.4% of the total market share throughout the forecast period, owing to the sophisticated healthcare infrastructure, rise in patient awareness about minimally invasive treatments, and high disposable income rising disease burden and changing lifestyle of people. Additionally, the strong foothold of industry players in the region will provide innovative solutions that will increase the adoption rate and are anticipated to drive the bioresorbable vascular scaffold industry in North America.

For instance, in September 2022 REVA Medical, LLC, a leader in bioresorbable polymer technologies for vascular applications, stated that enrollment in the MOTIV pivotal trial has been initiated at clinical centres in both the U.S. and Europe. The study will evaluate the use of the MOTIV Sirolimus-Eluting Bioresorbable Vascular Scaffold for treatment in patients suffering from chronic limb-threatening ischemia (CLTI).

COVID-19 Impact Analysis

During this pandemic of COVID-19, the rising prevalence of cardiovascular diseases and accompanying surgery adoptions is accelerating market growth. Amid this pandemic, the demand for bioresorbable scaffolds is increasing as they provide complete resorption and temporal mechanical support for patients.

Bioresorbable scaffolds are widely used as potential solutions for coronary artery diseases. These scaffolds prevent the adverse reactions caused by permanent metallic devices during percutaneous coronary intervention, which is a safe, effective, and timely preferred treatment for coronary artery diseases.

Competitive Landscape

The major global players in the Bioresorbable Vascular Scaffolds market include: BIOTRONIK, REVA Medical, Arterius, Meril Life Sciences Pvt. Ltd, Zorion Medical, Translumina, Abbott, Boston Scientific Corporation, Nano Therapeutics, Tsuna Med and among others.

Key Developments

  • In March 2021, Meril Life Sciences stated that it has launched indigenously researched and developed bioresorbable scaffold (BRS) MeRes100. Bioresorbable scaffolds are non-metallic, non-permanent mesh tubes, similar to stents, that dissolve over time after ensuring the previously blocked artery is opened via a routine angioplasty procedure.

Why Purchase the Report?

  • To visualize the global bioresorbable vascular scaffolds market segmentation-based device type, application, material type, end-user and region as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development
  • Excel data sheet with numerous data points of bioresorbable vascular scaffolds market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global bioresorbable vascular scaffolds market report would provide approximately 69 tables, 70 figures, and 185 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: MD7218

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Device Type
  • 3.2. Snippet by Application
  • 3.3. Snippet by Material Type
  • 3.4. Snippet by End User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Driver
      • 4.1.1.1. Rise in the prevalence of coronary artery diseases
      • 4.1.1.2. Rise in the technological advancements
    • 4.1.2. Restraints
      • 4.1.2.1. Limited clinical evidence
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Device Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Device Type
    • 7.1.2. Market Attractiveness Index, By Device Type
  • 7.2. Everolimus-eluting Device*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Novolimus-eluting Device
  • 7.4. Sirolimus-eluting Device

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Coronary Artery Disease*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Peripheral Artery Disease

9. By Material Type

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 9.1.2. Market Attractiveness Index, By Material Type
  • 9.2. Poly-L-Lactic Acid (PLLA)*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Tyrosine-derived Polycarbonate
  • 9.4. Others

10. By End User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.1.2. Market Attractiveness Index, By End User
  • 10.2. Hospitals *
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Ambulatory Surgical Centers (ASCs)
  • 10.4. Cardiac Catheterization Labs
  • 10.5. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Device Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Device Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Device Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application Type
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Device Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application Type
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Device Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Material Type
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

    • 13.1.1. BIOTRONIK
    • 13.1.2. Company Overview
    • 13.1.3. Product Type Portfolio and Description
    • 13.1.4. Financial Overview
    • 13.1.5. Key Developments
  • 13.2. REVA Medical
  • 13.3. Arterius
  • 13.4. Meril Life Sciences Pvt. Ltd.
  • 13.5. Zorion Medical
  • 13.6. Translumina
  • 13.7. Abbott
  • 13.8. Boston Scientific Corporation
  • 13.9. Nano Therapeutics
  • 13.10. Tsuna Med

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!