Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1382507

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1382507

Global Hydrogen Internal Combustion Engine Market - 2023-2030

PUBLISHED:
PAGES: 215 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Overview

Global Hydrogen Internal Combustion Engine Market reached US$ 27.6 billion in 2022 and is expected to reach US$ 59.6 billion by 2030, growing with a CAGR of 10.1% during the forecast period 2023-2030.

Within the larger hydrogen economy, the global hydrogen internal combustion engine (ICE) market is a dynamic and growing sector. Hydrogen ICEs are a possible alternative to standard internal combustion engines for sectors looking for ecologically friendly options.

Key global players are looking to invest in India owing to the higher sales of the automotive in India. For instance, in September 2023, Following the commercialization of hydrogen-powered engines in UK, JCB intends to manufacture these engines in India. Because it currently builds diesel engines for JCB's global operations, the company sees its Ballabhgarh factory as a suitable location for participating in the hydrogen program. Therefore, India will be witnessing the highest growth rate CAGR in the Asia-Pacific during the forecasted period.

Dynamics

Commercial Vehicles Fleet

Many governments and regions have set rigorous targets for reducing emissions from commercial vehicles. Trucks and buses in commercial fleets are often high-mileage, heavy-duty vehicles that release significant amounts of greenhouse gases and pollutants. Hydrogen ICEs are a cleaner alternative to typical diesel or gasoline engines, making them an appealing option for fleets looking to fulfill emissions regulations.

For instance, in February 2023, Reliance Industries has introduced India's first Hydrogen Internal Combustion Engine technology solution for heavy-duty vehicles. Under the Net Carbon Zero vision, RIL and its vehicle partner Ashok Leyland, along with a few other partners, developed the technology jointly. The first engines powered by this technology were tested in early 2022.

Growing Demand from Automotive Sector Owing to Low Emission

Electrification adoption in the vehicle industry has reached previously unheard-of heights. Transitioning to BEVs has not been successful in industries such as mining, agriculture and other offroad applications, which require higher power outputs 24 hours a day while being subjected to significant vibrations and heat generation. Diesel-powered engines are expected to be replaced with HCEs immediately in order to decarbonize the engines.

For instance, in February 2023, JCB, a British construction equipment company, is banking on hydrogen as the fuel of the future and aims to bring it to India with its hydrogen-powered engines that will power the machines. The company, which has around a 55% market share in backhoe loaders, developed a hydrogen-based internal combustion engine. While it has yet to be commercially deployed in UK, it is already testing them on several of its off-road machines, such as backhoe loaders. The advantage of a hydrogen combustion engine, which works on the same principle as a standard diesel engine, is that it emits no carbon and only water vapor.

Competing Technologies

Consumers may conserve money by using competitive technologies such as photogrammetry and smartphone-based 3D scanning apps. It does not necessitate the purchase of specialized 3D scanning hardware, which might be a substantial barrier for some potential consumers. Some competing technologies are relatively easy to use. Smartphone apps, enable consumers to capture 3D scans using devices they already own, lowering the learning curve and making 3D scanning more approachable.

Competing technologies frequently outperform one another in specific applications. Structured light scanners, for example, are known for their great accuracy and are recommended for applications requiring precision, such as quality control and reverse engineering. Because of this specialization, users may choose different technologies that better meet their individual demands.

Establishment of New Facilities

The development of new facilities, such as refueling stations, hydrogen production plants and hydrogen ICE manufacturing plants, enhances the hydrogen infrastructure. It increases the accessibility and convenience of hydrogen for a variety of uses, including transportation and industrial use.

For instance, in October 2023, The development of new facilities, such as hydrogen production plants, refueling stations and hydrogen ICE manufacturing plants, enhances the hydrogen infrastructure. It increases the accessibility and convenience of hydrogen for a variety of uses, including transportation and industrial use.

Tata Motors has opened two R&D centers in Pune to focus on the development of a Hydrogen Internal Combustion Engine as well as the infrastructure for storing and distributing Hydrogen fuel. The two facilities will serve as a platform for engine testing for the development of a Hydrogen Internal Combustion Engine, as well as the critical infrastructure for storing and transporting Hydrogen fuel, catering to both Fuel Cell and H2ICE cars.

Segment Analysis

The global hydrogen internal combustion engine market is segmented based on vehicle, hydrogen source, technology, application, end-user and region.

In Order to Lower the Emission, Commercial Vehicle Segment Generates the Higher Demand for Hydrogen Powered Engines

For instance, in January 2023, The Indian Union Cabinet approved the National Green Hydrogen Mission to promote the hydrogen environment. Following this approval, the mission was included in Union Budget for Fiscal Year (FY) 24 with a budget allocation of INR 19,744 crore. The goal aims to produce 5 MMT (million metric tonnes) of green hydrogen annually by 2030 in order to decarbonize the industrial, mobility and energy sectors and reduce reliance on imported fossil fuels and feedstock.

The transportation industry accounts for 24% of direct CO2 emissions from fuel burning, accounting for 10% of global greenhouse gas emissions. Vehicles with zero-emission technologies contribute to the green industrial, environmental and economic shift. Therefore, the commercial vehicle manufacturers are shifting to hydrogen powered engines in order to lower the emission of harmful gases. Hence, commercial vehicle segment dominates the global segment share with more than 50% of the segmental share globally.

Geographical Penetration

Collaborative Projects Generates the Revenue for HICE Key Players in North American Market

North America was participating in joint initiatives to enhance hydrogen technology with foreign partners. The collaborations sought to hasten the development and implementation of hydrogen ICEs in the region.

Electric vehicles are leading the charge toward a cleaner, zero-emissions future, but some may be startled to learn that they are not alone. Biodiesel, hydrogen and even solar technology are other options. Therefore, the North America captures the more than 1/3rd of the global hydrogen internal combustion engine market.

For instance, in November 2022, Tata Motors, India's largest commercial vehicle manufacturer and Cummins Inc., a global power solutions provider best known for its diesel engines, recently signed a Memorandum of Understanding to collaborate on the design and development of low and zero-emission commercial vehicles in India. It could include hydrogen-fueled internal combustion vehicles, fuel cells and electric vehicles driven by batteries.

COVID-19 Impact Analysis

The pandemic's economic uncertainties slowed investments and financing for hydrogen initiatives, especially hydrogen ICE development. Many enterprises in the hydrogen industry suffered financial difficulties. The automotive industry, a major user of hydrogen ICE technology, saw a drop in production and sales as a result of lockdowns and lower consumer demand. It has a direct impact on the car industry's adoption of hydrogen ICEs.

Russia-Ukraine War Impact Analysis

The protracted war has caused political and economic uncertainty in the region, resulting in a decrease in consumer spending power. Furthermore, the epidemic has significantly disrupted supply networks, causing firms to face manufacturing and distribution issues. As a result of the combined influence of these factors, the market is predicted to rise slowly.

However, it is crucial to remember that Hydrogen Internal Combustion Engine (ICE) are regarded critical components and when the situation stabilizes, demand for these items is projected to rebound. Major manufacturers with wide client bases, the flexibility to adjust to output variations and strong financial capacities are likely to benefit the most in this scenario, as they can navigate through protracted periods of uncertainty.

By Vehicle

  • Passenger Cars
  • Commercial Vehicles

By Hydrogen Source

  • Green Hydrogen
  • Grey Hydrogen
  • Blue Hydrogen
  • Other Sources

By Technology

  • Internal Combustion Engine (ICE)
  • Dual-Fuel Engines

By Application

  • Transportation
  • Power Generation

By End-User

  • Transportation
  • Industrial
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In October 2023, AVL, an Austrian mobility technology company, confirmed operations that showed its prototype 2.0-liter turbo hydrogen race engine producing more than 200 horsepower per liter. AVL employs a water-injection system in conjunction with their turbocharger to moderate combustion for a cleaner burn and increased power output and it appears to be working well.
  • In October 2023, The 2023 Japan Mobility Show, which will begin with the first press day on October 25, will be more than just about vehicles, as firms will also present different forms of mobility solutions. Yamaha Unveils Hydrogen-Burning Combustion Engine Buggy.
  • In February 2023, JCB, a British construction equipment company, is banking on hydrogen as the fuel of the future and aims to bring it to India with its hydrogen-powered engines that will power the machines.

Competitive Landscape

major global players in the market include: Toyota Industries Corporation, BMW Group, Hyundai Motor Company, Mazda Motor Corporation, JCB, ABB, Opel/Vauxhall (Stellantis Group), Ballard Power Systems, Jaguar Land Rover Automotive plc and Hyster-Yale Group.

Why Purchase the Report?

  • To visualize the global hydrogen internal combustion engine market segmentation based on vehicle, hydrogen source, technology, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of hydrogen internal combustion engine market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Hydrogen Source mapping available as excel consisting of key products of all the major players.

The global hydrogen internal combustion engine market report would provide approximately 77 tables, 74 figures and 215 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: EP7425

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Vehicle
  • 3.2. Snippet by Hydrogen Source
  • 3.3. Snippet by Technology
  • 3.4. Snippet by Application
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Commercial Vehicles Fleet
      • 4.1.1.2. Growing Demand from Automotive Sector Owing to Low Emission
      • 4.1.1.3. Establishment of New Facilities
    • 4.1.2. Restraints
      • 4.1.2.1. Competing Technologies
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Vehicle

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 7.1.2. Market Attractiveness Index, By Vehicle
  • 7.2. Passenger Cars*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Commercial Vehicles

8. By Hydrogen Source

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Source
    • 8.1.2. Market Attractiveness Index, By Hydrogen Source
  • 8.2. Green Hydrogen*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Grey Hydrogen
  • 8.4. Blue Hydrogen
  • 8.5. Other Sources

9. By Technology

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.1.2. Market Attractiveness Index, By Technology
  • 9.2. Internal Combustion Engine (ICE)*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Dual-Fuel Engines

10. By Application

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.1.2. Market Attractiveness Index, By Application
  • 10.2. Transportation*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Power Generation

11. By End-User

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.1.2. Market Attractiveness Index, By End-User
  • 11.2. Transportation*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Industrial
  • 11.4. Others

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Source
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Source
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. UK
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Russia
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Source
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia-Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Source
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 12.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia-Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Source
    • 12.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 12.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. Toyota Industries Corporation*
    • 14.1.1. Company Overview
    • 14.1.2. Hydrogen Source Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. BMW Group
  • 14.3. Hyundai Motor Company
  • 14.4. Mazda Motor Corporation
  • 14.5. JCB
  • 14.6. ABB
  • 14.7. Opel/Vauxhall (Stellantis Group)
  • 14.8. Ballard Power Systems
  • 14.9. Jaguar Land Rover Automotive Plc
  • 14.10. Hyster-Yale Group

LIST NOT EXHAUSTIVE

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!