Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1297800

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1297800

Global IoT in Healthcare Market - 2023-2030

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

The Global IoT (Internet of Things) In Healthcare Market reached US$ 120.2 billion in 2022 and is projected to witness lucrative growth by reaching up to US$ 390.2 billion by 2030. The global IoT in healthcare market is expected to exhibit a CAGR of 16.4% during the forecast period (2023-2030). The increasing use of wearable devices, and integration of AI and IoT are driving up demand for IoT in healthcare market trends.

The global IoT in the healthcare market is expanding rapidly, owing to the growing adoption of IoT technologies in the healthcare sector. When IoT is integrated with healthcare, it offers seamless connectivity, real-time monitoring, and data-driven insights, revolutionizing the delivery of healthcare services. The incorporation of IoT devices, sensors, and platforms into healthcare applications has the potential to improve patient outcomes, boost operational efficiency, and lower healthcare costs.

The IoT in the healthcare market scope comprises components encompassing medical devices, system & software, services, and others, which has increased usage of IoT in healthcare market share. The global market for IoT in healthcare is expanding as a result of factors including the growing demand for remote patient monitoring, technological advancements, need for improved healthcare efficiency and quality, and rising aging population market growth.

Market Dynamics

An Increase in Aging Population Drive the Growth of the IoT in Healthcare Market

The growing aging population is expected to be a major driver for IoT in healthcare market. As the population continues to age, there is high demand for innovative healthcare solutions that can cater to the specific needs of older adults. For instance, according to World Health Organization (WHO) 2022 report, by 2030, about one out of every six people on the planet will be 60 or older. Within this time span, the share of the world population aged 60 and up is expected to increase from 1 billion in 2020 to 1.4 billion.

IoT technologies can improve the quality of care for this demographic through a range of applications. Remote monitoring devices, wearable sensors, and smart home systems enable continuous health monitoring, fall detection, medication management, and remote consultations. While reducing the burden on healthcare facilities, these IoT solutions enable older adults to age in place, receive personalized care, and maintain independence. Hence, the growing aging population is driving the IoT in healthcare market.

Higher Penetration of Smart Phones is the Major Driver in the Global IoT in Healthcare Market

The majority of the global population owns smartphones, which makes IoT-enabled healthcare solutions widely available. Various IoT devices and applications in healthcare are accessible and interactable through smartphones. For instance, according to the Mobile Economy 2022 report, smartphone penetration reached 67% of the global population in 2021 and is expected to reach 85% by 2025. IoT solutions in healthcare are more likely to be adopted as a result of this widespread adoption of smartphones.

Smartphones allow individuals to access and interact with various IoT devices and applications in healthcare. Remote monitoring and seamless connectivity are enabled by this technology, enhancing the delivery of healthcare services. The increasing adoption of smartphones contributes to the expansion and acceptance of IoT technologies in the healthcare sector, ultimately driving market growth.

Cybersecurity Concerns will Hamper the Growth of the Market

The cybersecurity vulnerability associated with medical devices is a complex issue that arises from multiple factors and requires careful consideration. The shift from isolated devices to interconnected networks introduces challenges in balancing security and safety. Various incidents serve as examples of the wide-ranging cybersecurity concerns in this domain.

However, it is important to note that the absence of embedded security controls in the devices themselves is a more significant concern than the specific incidents that occur as a result. Research indicates common vulnerabilities such as web interfaces with inadequate security measures, hardcoded administration passwords, and devices connected to internal networks with internet access. Hence these above mentioned factors are limiting the IoT in healthcare market's growth.

COVID-19 Impact Analysis

The financial health of companies across all industries has been impacted by the COVID-19 pandemic and lockdown in numerous nations throughout the world. Therefore, for the period of the COVID-19 public health emergency, the U.S. Food and Drug Administration (FDA) issued guidelines that include general considerations to aid sponsors and researchers, ensuring the safety of trial participants, adhering to good clinical practice (GCP), and minimizing risks to trial integrity.

Russia-Ukraine War Impact Analysis

The Russia-Ukraine conflict has had a huge impact on IoT in healthcare. Damage to healthcare infrastructure, including hospitals and clinics, impairs the deployment and operation of IoT devices. Power interruptions and poor connectivity in conflict zones reduce the usefulness of IoT devices that rely on consistent power and internet access.

Displacement of healthcare workers and patients hinders continuity of care and access to healthcare services, impeding the use of IoT devices. During a war, cybersecurity concerns increase, posing hazards to medical data and IoT networks. Trade disruptions reduce the availability of IoT devices, limiting their use in healthcare. Despite these hurdles, efforts to restore stability and improve security procedures can help lessen the impact of the conflict on IoT in healthcare.

Segment Analysis

The global IoT in healthcare market is segmented based on component, application, end user and region.

Wearable External Medical Devices Segment Accounts for 34.3% of the Market Share Owing to Rising Demand

The wearable external medical devices segment is expected to dominate the global IoT in healthcare market due to the increasing demand for wearable devices that can track and monitor health data in real time. Wearable devices such as smartwatches, fitness trackers, and biosensors enable continuous monitoring of physiological parameters, activity levels, and sleep patterns.

External medical devices, including remote patient monitoring systems, smart inhalers, and insulin pumps, offer advanced healthcare monitoring and management outside of traditional healthcare settings. In addition, the increasing prevalence of chronic diseases such as diabetes, heart disease, and cancer is also driving the demand for wearable external medical devices. These devices can be used to monitor patients' health data and provide alerts if there are any changes in their condition. This can help to improve patient outcomes and reduce the risk of complications.

Hospitals are increasingly embracing wearable medical devices to enhance patient compliance and care. For instance, Manipal Hospitals uses a remote monitoring system connected to Fitbit gadgets to monitor patients' post-surgery rehabilitation. A ConnectedLife online monitoring solution is used to record and transmit patient data, such as heart rate and sleep quality, to healthcare experts.

A sophisticated AI-powered in-patient room automation system that Apollo Hospitals has introduced enables remote monitoring of respiratory and cardiac rates. For convenient health screening and diagnosis, they have also implemented IoT-enabled smart health kiosks. The delivery of healthcare is being revolutionized by these developments, which are also advancing accessibility.

Geographical Analysis

North America Accounted for Approximately 41.4% of the Market Share Owing to the Investment by the Major Players' Presence in this Region

North America's market dominance has been facilitated by the presence of established and influential companies such as technological behemoths, along with innovative startup presence, healthcare providers, and IoT solution suppliers. These organizations have recognized the potential of IoT to improve healthcare delivery and have made significant investments in developing and deploying IoT solutions in the healthcare industry. Their investment initiatives have expedited the adoption of IoT technologies and the market's growth in North America.

For instance, in December 2022, Spike, an American company that specializes in API aggregation and ETL solutions for wearable and IoT device data, has completed a $700,000 pre-seed investment round. The funding is intended to assist digital health enterprises in improving the well-being of their clients. Spike provides an easy-to-use integration platform that allows businesses to combine biomarker data from over 200 wearable sensors and IoT devices into their applications.

This data includes crucial information such as HRV, glucose and cortisol levels, calories, sleep depth, blood pressure, and more. By using Spike's technology, digital health organisations may gain access to and successfully use a wide range of biometric data to better the lives of their clients.. Therefore, these factors show the dominance of North America region in this market.

Competitive Landscape

The major global players in the IoT in healthcare market include: Medtronic, Cisco Systems, Inc., IBM Corporation, GE Healthcare, Microsoft Corporation, SAP SE, Infosys Limited, Cerner Corporation, QUALCOMM Incorporated, and Wipro ltd among others.

Why Purchase the Report?

  • To visualize the global IoT in healthcare market segmentation based on component, application, end user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of IoT in healthcare market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global IoT in healthcare market report would provide approximately 53 tables, 54 figures and 195 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: HCIT1049

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Component
  • 3.2. Snippet by Application
  • 3.3. Snippet by End User
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. An Increase in Aging Population
      • 4.1.1.2. Higher Penetration of Smart Phones
    • 4.1.2. Restraints
      • 4.1.2.1. Cybersecurity Concerns
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's 5 Forces Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID-19
    • 6.1.2. Scenario During COVID-19
    • 6.1.3. Scenario Post COVID-19
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Component

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 7.1.2. Market Attractiveness Index, By Component
  • 7.2. Medical Devices*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. System & Software
  • 7.4. Services
  • 7.5. Connectivity Technology

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Telemedicine*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Clinical Operations and Workflow Management
  • 8.4. Connected Imaging
  • 8.5. Inpatient Monitoring
  • 8.6. Medication Management
  • 8.7. Others

9. By End User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 9.1.2. Market Attractiveness Index, By End User
  • 9.2. Hospitals and Clinics*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Clinical Research Organizations
  • 9.4. Research and Diagnostic Laboratories
  • 9.5. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. The U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. The U.K.
      • 10.3.6.3. France
      • 10.3.6.4. Spain
      • 10.3.6.5. Italy
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan

Australia

      • 10.5.6.4. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End User

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Medtronic *
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Cisco Systems, Inc.
  • 12.3. IBM Corporation
  • 12.4. GE Healthcare
  • 12.5. Microsoft Corporation
  • 12.6. SAP SE
  • 12.7. Infosys Limited
  • 12.8. Cerner Corporation
  • 12.9. QUALCOMM Incorporated
  • 12.10. Wipro ltd

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!