Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1440569

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1440569

The Global Market for Green Hydrogen 2024-2035

PUBLISHED:
PAGES: 323 Pages, 59 Tables, 64 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1280

Add to Cart

Green hydrogen refers to hydrogen produced through renewable energy powered electrolysis of water, rather than carbon-intensive methods like steam methane reforming. It has no associated carbon emissions. Electrolyzer technologies are crucial for scaling up production of green hydrogen. Electrolyzers use electricity to split water into hydrogen and oxygen gas streams. These electrochemical systems along with renewable energy sources like solar, wind or hydro power enable renewable hydrogen production. Cost declines through technology innovations, manufacturing scale-up and more renewable electricity integration are vital to displace existing fossil-based hydrogen supplying refining, fertilizer and chemical industries today. As green hydrogen scales, it can provide a sustainable energy storage vector and decarbonize sectors like steel, ammonia and transportation (through synthetic fuels) that lack easy electrification routes, playing a major role in achieving global net zero targets.

"The Global Market for Green Hydrogen 2024-2035" provides a comprehensive overview of the emerging hydrogen economy and the pivotal role of green hydrogen production in enabling wider adoption across industrial applications. Spanning over 300 pages, the report analyzes global energy demand scenarios and the potential for hydrogen to deliver deep decarbonization across sectors from transportation to steel manufacturing.

Detailed technology analysis focuses on next generation electrolysis techniques for scalable green hydrogen generation from water and renewable electricity. Comparative assessment of alkaline, polymer electrolyte membrane, anion exchange membrane and solid oxide electrolysis systems explores component materials, system configurations, costs, manufacturing challenges and key innovative companies developing these technologies.

Additional sections profile developments around hydrogen storage and distribution infrastructure including pipelines, compression and liquefaction. The utilization segment covers fuel cell electric vehicles, synthetic fuel production, ammonia synthesis and other hydrogen end-uses across aviation, shipping and heat/power sectors.

The report covers 130 company profiles of major corporations, innovative start-ups and disruptive new entrants commercializing breakthroughs across the hydrogen value chain. Competencies span from advanced electrolyzer stacks to full solutions for onsite hydrogen generation, transportation fleets, renewable energy integration and industrial decarbonization projects.

Report contents include:

  • Overview of the hydrogen economy and production landscape
  • Analysis of global energy demand scenarios and hydrogen's decarbonization potential
  • Breakdown of the hydrogen value chain - production, storage/transport, utilization
  • Details on green hydrogen production methods, projects, and role in energy transition
  • In-depth technology analysis of next-gen electrolyzers:
    • Alkaline (AWE)
    • Polymer Electrolyte Membrane (PEMEL)
    • Anion Exchange Membrane (AEMEL)
    • Solid Oxide (SOEC)
  • Review of hydrogen storage and transportation infrastructure
  • Coverage of utilization applications:
    • Fuel cell electric vehicles
    • Synthetic e-fuel production
    • Green ammonia production
    • Renewable power and heat generation
  • Profiles of 130 key companies across the hydrogen value chain:
    • Industrial gas suppliers
    • Emerging electrolyzer manufacturers
    • Energy majors
    • Chemical/ammonia companies
    • Innovative start-ups
  • Hydrogen production analysis for global regions
  • Assessment of market challenges and growth drivers

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

2. INTRODUCTION

  • 2.1. Hydrogen classification
    • 2.1.1. Hydrogen colour shades
  • 2.2. Global energy demand and consumption
  • 2.3. The hydrogen economy and production
  • 2.4. Removing CO2 emissions from hydrogen production
  • 2.5. Hydrogen value chain
    • 2.5.1. Production
    • 2.5.2. Transport and storage
    • 2.5.3. Utilization
  • 2.6. National hydrogen initiatives, policy and regulation
  • 2.7. Hydrogen certification
  • 2.8. Carbon pricing
  • 2.9. Market challenges
  • 2.10. Industry developments 2020-2024
  • 2.11. Market map
  • 2.12. Global hydrogen production
    • 2.12.1. Industrial applications
    • 2.12.2. Hydrogen energy
      • 2.12.2.1. Stationary use
      • 2.12.2.2. Hydrogen for mobility
    • 2.12.3. Current Annual H2 Production
    • 2.12.4. Hydrogen production processes
      • 2.12.4.1. Hydrogen as by-product
      • 2.12.4.2. Reforming
        • 2.12.4.2.1. SMR wet method
        • 2.12.4.2.2. Oxidation of petroleum fractions
        • 2.12.4.2.3. Coal gasification
      • 2.12.4.3. Reforming or coal gasification with CO2 capture and storage
      • 2.12.4.4. Steam reforming of biomethane
      • 2.12.4.5. Water electrolysis
      • 2.12.4.6. The "Power-to-Gas" concept
      • 2.12.4.7. Fuel cell stack
      • 2.12.4.8. Electrolysers
      • 2.12.4.9. Other
        • 2.12.4.9.1. Plasma technologies
        • 2.12.4.9.2. Photosynthesis
        • 2.12.4.9.3. Bacterial or biological processes
        • 2.12.4.9.4. Oxidation (biomimicry)
    • 2.12.5. Production costs
    • 2.12.6. Global hydrogen demand forecasts
    • 2.12.7. Hydrogen Production in the United States
      • 2.12.7.1. Gulf Coast
      • 2.12.7.2. California
      • 2.12.7.3. Midwest
      • 2.12.7.4. Northeast
      • 2.12.7.5. Northwest
    • 2.12.8. DOE Hydrogen Hubs
    • 2.12.9. US Hydrogen Electrolyzer Capacities, Planned and Installed

3. GREEN HYDROGEN PRODUCTION

  • 3.1. Overview
  • 3.2. Green hydrogen projects
  • 3.3. Motivation for use
  • 3.4. Decarbonization
  • 3.5. Comparative analysis
  • 3.6. Role in energy transition
  • 3.7. Renewable energy sources
    • 3.7.1. Wind power
    • 3.7.2. Solar Power
    • 3.7.3. Nuclear
    • 3.7.4. Capacities
    • 3.7.5. Costs
  • 3.8. SWOT analysis

4. ELECTROLYZER TECHNOLOGIES

  • 4.1. Introduction
  • 4.2. Main types
  • 4.3. Balance of Plant
  • 4.4. Characteristics
  • 4.5. Advantages and disadvantages
  • 4.6. Electrolyzer market
    • 4.6.1. Market trends
    • 4.6.2. Market landscape
    • 4.6.3. Innovations
    • 4.6.4. Cost challenges
    • 4.6.5. Scale-up
    • 4.6.6. Manufacturing challenges
    • 4.6.7. Market opportunity and outlook
  • 4.7. Alkaline water electrolyzers (AWE)
    • 4.7.1. Technology description
    • 4.7.2. AWE plant
    • 4.7.3. Components and materials
    • 4.7.4. Costs
    • 4.7.5. Companies
  • 4.8. Anion exchange membrane electrolyzers (AEMEL)
    • 4.8.1. Technology description
    • 4.8.2. AEMEL plant
    • 4.8.3. Components and materials
      • 4.8.3.1. Catalysts
      • 4.8.3.2. Anion exchange membranes (AEMs)
      • 4.8.3.3. Materials
    • 4.8.4. Costs
    • 4.8.5. Companies
  • 4.9. Proton exchange membrane electrolyzers (PEMEL)
    • 4.9.1. Technology description
    • 4.9.2. PEMEL plant
    • 4.9.3. Components and materials
      • 4.9.3.1. Membranes
      • 4.9.3.2. Advanced PEMEL stack designs
      • 4.9.3.3. Plug-and-Play & Customizable PEMEL Systems
      • 4.9.3.4. PEMELs and proton exchange membrane fuel cells (PEMFCs)
    • 4.9.4. Costs
    • 4.9.5. Companies
  • 4.10. Solid oxide water electrolyzers (SOEC)
    • 4.10.1. Technology description
    • 4.10.2. SOEC plant
    • 4.10.3. Components and materials
      • 4.10.3.1. External process heat
      • 4.10.3.2. Clean Syngas Production
      • 4.10.3.3. Nuclear power
      • 4.10.3.4. SOEC and SOFC cells
        • 4.10.3.4.1. Tubular cells
        • 4.10.3.4.2. Planar cells
      • 4.10.3.5. SOEC Electrolyte
    • 4.10.4. Costs
    • 4.10.5. Companies
  • 4.11. Other types
    • 4.11.1. Overview
    • 4.11.2. CO2 electrolysis
      • 4.11.2.1. Electrochemical CO2 Reduction
      • 4.11.2.2. Electrochemical CO2 Reduction Catalysts
      • 4.11.2.3. Electrochemical CO2 Reduction Technologies
      • 4.11.2.4. Low-Temperature Electrochemical CO2 Reduction
      • 4.11.2.5. High-Temperature Solid Oxide Electrolyzers
      • 4.11.2.6. Cost
      • 4.11.2.7. Challenges
      • 4.11.2.8. Coupling H2 and Electrochemical CO2
      • 4.11.2.9. Products
    • 4.11.3. Seawater electrolysis
      • 4.11.3.1. Direct Seawater vs Brine (Chlor-Alkali) Electrolysis
      • 4.11.3.2. Key Challenges & Limitations
    • 4.11.4. Protonic Ceramic Electrolyzers (PCE)
    • 4.11.5. Microbial Electrolysis Cells (MEC)
    • 4.11.6. Photoelectrochemical Cells (PEC)
    • 4.11.7. Companies
  • 4.12. Costs
  • 4.13. Water and land use for green hydrogen production
  • 4.14. Electrolyzer manufacturing capacities

5. HYDROGEN STORAGE AND TRANSPORT

  • 5.1. Market overview
  • 5.2. Hydrogen transport methods
    • 5.2.1. Pipeline transportation
    • 5.2.2. Road or rail transport
    • 5.2.3. Maritime transportation
    • 5.2.4. On-board-vehicle transport
  • 5.3. Hydrogen compression, liquefaction, storage
    • 5.3.1. Solid storage
    • 5.3.2. Liquid storage on support
    • 5.3.3. Underground storage
    • 5.3.4. Subsea Hydrogen Storage
  • 5.4. Market players

6. HYDROGEN UTILIZATION

  • 6.1. Hydrogen Fuel Cells
  • 6.2. Market overview
    • 6.2.1. PEM fuel cells (PEMFCs)
    • 6.2.2. Solid oxide fuel cells (SOFCs)
    • 6.2.3. Alternative fuel cells
  • 6.3. Alternative fuel production
    • 6.3.1. Solid Biofuels
    • 6.3.2. Liquid Biofuels
    • 6.3.3. Gaseous Biofuels
    • 6.3.4. Conventional Biofuels
    • 6.3.5. Advanced Biofuels
    • 6.3.6. Feedstocks
    • 6.3.7. Production of biodiesel and other biofuels
    • 6.3.8. Renewable diesel
    • 6.3.9. Biojet and sustainable aviation fuel (SAF)
    • 6.3.10. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
      • 6.3.10.1. Hydrogen electrolysis
      • 6.3.10.2. eFuel production facilities, current and planned
  • 6.4. Hydrogen Vehicles
    • 6.4.1. Market overview
  • 6.5. Aviation
    • 6.5.1. Market overview
  • 6.6. Ammonia production
    • 6.6.1. Market overview
    • 6.6.2. Decarbonisation of ammonia production
    • 6.6.3. Green ammonia synthesis methods
      • 6.6.3.1. Haber-Bosch process
      • 6.6.3.2. Biological nitrogen fixation
      • 6.6.3.3. Electrochemical production
      • 6.6.3.4. Chemical looping processes
    • 6.6.4. Blue ammonia
      • 6.6.4.1. Blue ammonia projects
    • 6.6.5. Chemical energy storage
      • 6.6.5.1. Ammonia fuel cells
      • 6.6.5.2. Marine fuel
  • 6.7. Methanol production
    • 6.7.1. Market overview
    • 6.7.2. Methanol-to gasoline technology
      • 6.7.2.1. Production processes
        • 6.7.2.1.1. Anaerobic digestion
        • 6.7.2.1.2. Biomass gasification
        • 6.7.2.1.3. Power to Methane
  • 6.8. Steelmaking
    • 6.8.1. Market overview
    • 6.8.2. Comparative analysis
    • 6.8.3. Hydrogen Direct Reduced Iron (DRI)
  • 6.9. Power & heat generation
    • 6.9.1. Market overview
      • 6.9.1.1. Power generation
      • 6.9.1.2. Heat Generation
  • 6.10. Maritime
    • 6.10.1. Market overview
  • 6.11. Fuel cell trains
    • 6.11.1. Market overview

7. COMPANY PROFILES

  • 7.1. Adani Green Energy
  • 7.2. Advanced Ionics
  • 7.3. Aemetis, Inc
  • 7.4. Air Products
  • 7.5. Aker Horizons ASA
  • 7.6. Alchemr, Inc
  • 7.7. Arcadia eFuels
  • 7.8. AREVA H2Gen
  • 7.9. Asahi Kasei
  • 7.10. Atmonia
  • 7.11. Avantium
  • 7.12. BASF
  • 7.13. Battolyser Systems
  • 7.14. Blastr Green Steel
  • 7.15. Bloom Energy
  • 7.16. Boson Energy Ltd
  • 7.17. BP
  • 7.18. Carbon Sink LLC
  • 7.19. Cavendish Renewable Technology
  • 7.20. Ceres Power Holdings plc
  • 7.21. Chevron Corporation
  • 7.22. CHARBONE Hydrogen
  • 7.23. Chiyoda Corporation
  • 7.24. Cockerill Jingli Hydrogen
  • 7.25. Convion Ltd
  • 7.26. Cummins, Inc
  • 7.27. C-Zero
  • 7.28. Cipher Neutron
  • 7.29. Dimensional Energy
  • 7.30. Domsjo Fabriker AB
  • 7.31. Dynelectro ApS
  • 7.32. Elcogen AS
  • 7.33. Electric Hydrogen
  • 7.34. Elogen H2
  • 7.35. Enapter
  • 7.36. ENEOS Corporation
  • 7.37. Equatic
  • 7.38. Ergosup
  • 7.39. Everfuel A/S
  • 7.40. EvolOH, Inc
  • 7.41. Evonik Industries AG
  • 7.42. Flexens Oy AB
  • 7.43. FuelCell Energy
  • 7.44. FuelPositive Corp
  • 7.45. Fusion Fuel
  • 7.46. Genvia
  • 7.47. Graforce
  • 7.48. GeoPura
  • 7.49. Greenlyte Carbon Technologies
  • 7.50. Green Fuel
  • 7.51. Green Hydrogen Systems
  • 7.52. Heliogen
  • 7.53. Hitachi Zosen
  • 7.54. Hoeller Electrolyzer GmbH
  • 7.55. Honda
  • 7.56. H2B2 Electrolysis Technologies Inc
  • 7.57. H2Electro
  • 7.58. H2Greem
  • 7.59. H2 Green Steel
  • 7.60. H2Pro, Ltd
  • 7.61. H2U Technologies
  • 7.62. H2Vector Energy Technologies, S.L
  • 7.63. Hycamite TCD Technologies Oy
  • 7.64. HydroLite
  • 7.65. HydrogenPro
  • 7.66. Hygenco
  • 7.67. HydGene Renewables
  • 7.68. Hydrogenera
  • 7.69. Hysata
  • 7.70. Hystar AS
  • 7.71. IdunnH2
  • 7.72. Infinium Electrofuels
  • 7.73. Ionomr Innovations
  • 7.74. ITM Power
  • 7.75. Kobelco
  • 7.76. Kyros Hydrogen Solutions GmbH
  • 7.77. Lhyfe S.A
  • 7.78. LONGi Hydrogen
  • 7.79. McPhy Energy SAS
  • 7.80. Matteco
  • 7.81. NEL Hydrogen
  • 7.82. NEOM Green Hydrogen Company
  • 7.83. Newtrace
  • 7.84. Next Hydrogen Solutions
  • 7.85. Norsk e-Fuel AS
  • 7.86. OCOchem
  • 7.87. Ohmium International
  • 7.88. 1s1 Energy
  • 7.89. Ossus Biorenewables
  • 7.90. OXCCU Tech Ltd
  • 7.91. OxEon Energy, LLC
  • 7.92. Parallel Carbon
  • 7.93. Peregrine Hydrogen
  • 7.94. PERIC Hydrogen Technologies Co
  • 7.95. Perpetual Next Technologies
  • 7.96. Pherousa Green Shipping
  • 7.97. Plagazi AB
  • 7.98. Plenesys
  • 7.99. Plug Power, Inc
  • 7.100. P2X Solutions Oy
  • 7.101. QD-SOL Ltd
  • 7.102. Quantron AG
  • 7.103. Qairos Energies
  • 7.104. Resilient Energi
  • 7.105. Ryze Hydrogen
  • 7.106. SeeO2 Energy
  • 7.107. Shell plc
  • 7.108. sHYp
  • 7.109. Siemens Energy AG
  • 7.110. SoHHytec SA
  • 7.111. Sparc Hydrogen
  • 7.112. Stargate Hydrogen Solutions OU
  • 7.113. Storegga Geotechnologies Limited
  • 7.114. SunFire
  • 7.115. SungreenH2
  • 7.116. SunHydrogen
  • 7.117. Syzygy Plasmonics
  • 7.118. Thiozen
  • 7.119. Thyssenkrupp Nucera
  • 7.120. TFP Hydrogen Products
  • 7.121. Tokuyama
  • 7.122. Total Energies
  • 7.123. Tractebel Engie
  • 7.124. Travertine Technologies, Inc
  • 7.125. Tree Energy Solutions (TES-H2)
  • 7.126. Twelve Corporation
  • 7.127. Verdagy
  • 7.128. Versogen LLC
  • 7.129. Zhero

8. REFERENCES

List of Tables

  • Table 1. Hydrogen colour shades, Technology, cost, and CO2 emissions
  • Table 2. Main applications of hydrogen
  • Table 3. Overview of hydrogen production methods
  • Table 4. National hydrogen initiatives
  • Table 5. Market challenges in the hydrogen economy and production technologies
  • Table 6. Green hydrogen industry developments 2020-2024
  • Table 7. Market map for hydrogen technology and production
  • Table 8. Industrial applications of hydrogen
  • Table 9. Hydrogen energy markets and applications
  • Table 10. Hydrogen production processes and stage of development
  • Table 11. Estimated costs of clean hydrogen production
  • Table 12. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region
  • Table 13. Green hydrogen application markets
  • Table 14. Green hydrogen projects
  • Table 15. Traditional Hydrogen Production
  • Table 16. Hydrogen Production Processes
  • Table 17. Comparison of hydrogen types
  • Table 18. Characteristics of typical water electrolysis technologies
  • Table 19. Advantages and disadvantages of water electrolysis technologies
  • Table 20. Classifications of Alkaline Electrolyzers
  • Table 21. Advantages & limitations of AWE
  • Table 22. Key performance characteristics of AWE
  • Table 23. Companies in the AWE market
  • Table 24. Comparison of Commercial AEM Materials
  • Table 25. Companies in the AMEL market
  • Table 26. Companies in the PEMEL market
  • Table 27. Companies in the SOEC market
  • Table 28. Other types of electrolyzer technologies
  • Table 29. Electrochemical CO2 Reduction Technologies/
  • Table 30. Cost Comparison of CO2 Electrochemical Technologies
  • Table 31. Companies developing other electrolyzer technologies
  • Table 32. Electrolyzer Installations Forecast (GW), 2020-2040
  • Table 33. Global market size for Electrolyzers, 2018-2035 (US$B)
  • Table 34. Market overview-hydrogen storage and transport
  • Table 35. Summary of different methods of hydrogen transport
  • Table 36. Market players in hydrogen storage and transport
  • Table 37. Market overview hydrogen fuel cells-applications, market players and market challenges
  • Table 38. Categories and examples of solid biofuel
  • Table 39. Comparison of biofuels and e-fuels to fossil and electricity
  • Table 40. Classification of biomass feedstock
  • Table 41. Biorefinery feedstocks
  • Table 42. Feedstock conversion pathways
  • Table 43. Biodiesel production techniques
  • Table 44. Advantages and disadvantages of biojet fuel
  • Table 45. Production pathways for bio-jet fuel
  • Table 46. Applications of e-fuels, by type
  • Table 47. Overview of e-fuels
  • Table 48. Benefits of e-fuels
  • Table 49. eFuel production facilities, current and planned
  • Table 50. Market overview for hydrogen vehicles-applications, market players and market challenges
  • Table 51. Blue ammonia projects
  • Table 52. Ammonia fuel cell technologies
  • Table 53. Market overview of green ammonia in marine fuel
  • Table 54. Summary of marine alternative fuels
  • Table 55. Estimated costs for different types of ammonia
  • Table 56. Comparison of biogas, biomethane and natural gas
  • Table 57. Hydrogen-based steelmaking technologies
  • Table 58. Comparison of green steel production technologies
  • Table 59. Advantages and disadvantages of each potential hydrogen carrier

List of Figures

  • Figure 1. Hydrogen value chain
  • Figure 2. Current Annual H2 Production
  • Figure 3. Principle of a PEM electrolyser
  • Figure 4. Power-to-gas concept
  • Figure 5. Schematic of a fuel cell stack
  • Figure 6. High pressure electrolyser - 1 MW
  • Figure 7. Global hydrogen demand forecast
  • Figure 8. U.S. Hydrogen Production by Producer Type
  • Figure 9. Segmentation of regional hydrogen production capacities in the US
  • Figure 10. Current of planned installations of Electrolyzers over 1MW in the US
  • Figure 11. SWOT analysis: green hydrogen
  • Figure 12. Types of electrolysis technologies
  • Figure 13. Typical Balance of Plant including Gas processing
  • Figure 14. Schematic of alkaline water electrolysis working principle
  • Figure 15. Alkaline water electrolyzer
  • Figure 16. Typical system design and balance of plant for an AEM electrolyser
  • Figure 17. Schematic of PEM water electrolysis working principle
  • Figure 18. Typical system design and balance of plant for a PEM electrolyser
  • Figure 19. Schematic of solid oxide water electrolysis working principle
  • Figure 20. Typical system design and balance of plant for a solid oxide electrolyser
  • Figure 21. Estimated annual electrolyser manufacturing capacity, by manufacture's headquarters (a) and by type and origin (b), 2021-2024
  • Figure 22. Electrolyzer Installations Forecast (GW), 2020-2040
  • Figure 23. Global market size for Electrolyzers, 2018-2035 (US$B)
  • Figure 24. Process steps in the production of electrofuels
  • Figure 25. Mapping storage technologies according to performance characteristics
  • Figure 26. Production process for green hydrogen
  • Figure 27. E-liquids production routes
  • Figure 28. Fischer-Tropsch liquid e-fuel products
  • Figure 29. Resources required for liquid e-fuel production
  • Figure 30. Levelized cost and fuel-switching CO2 prices of e-fuels
  • Figure 31. Cost breakdown for e-fuels
  • Figure 32. Hydrogen fuel cell powered EV
  • Figure 33. Green ammonia production and use
  • Figure 34. Classification and process technology according to carbon emission in ammonia production
  • Figure 35. Schematic of the Haber Bosch ammonia synthesis reaction
  • Figure 36. Schematic of hydrogen production via steam methane reformation
  • Figure 37. Estimated production cost of green ammonia
  • Figure 38. Renewable Methanol Production Processes from Different Feedstocks
  • Figure 39. Production of biomethane through anaerobic digestion and upgrading
  • Figure 40. Production of biomethane through biomass gasification and methanation
  • Figure 41. Production of biomethane through the Power to methane process
  • Figure 42. Transition to hydrogen-based production
  • Figure 43. CO2 emissions from steelmaking (tCO2/ton crude steel)
  • Figure 44. Hydrogen Direct Reduced Iron (DRI) process
  • Figure 45. Three Gorges Hydrogen Boat No. 1
  • Figure 46. PESA hydrogen-powered shunting locomotive
  • Figure 47. SymbioticTM technology process
  • Figure 48. Alchemr AEM electrolyzer cell
  • Figure 49. Domsjo process
  • Figure 51. EL 2.1 AEM Electrolyser
  • Figure 52. Enapter - Anion Exchange Membrane (AEM) Water Electrolysis
  • Figure 50. Direct MCHR process
  • Figure 54. FuelPositive system
  • Figure 55. Using electricity from solar power to produce green hydrogen
  • Figure 56. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process
  • Figure 57. Hystar PEM electrolyser
  • Figure 58. OCOchem's Carbon Flux Electrolyzer
  • Figure 59. CO2 hydrogenation to jet fuel range hydrocarbons process
  • Figure 60. The Plagazi R process
  • Figure 61. Sunfire process for Blue Crude production
  • Figure 62. O12 Reactor
  • Figure 63. Sunglasses with lenses made from CO2-derived materials
  • Figure 64. CO2 made car part
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!