Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1462399

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1462399

The Global Market for Bio-based and Sustainable Materials 2024-2035

PUBLISHED:
PAGES: 2,322 Pages, 513 Tables, 630 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 2560

Add to Cart

Advancements in science and technology are enabling companies to develop and design chemicals and materials for a more sustainable future. The global plastics industry is increasingly turning to biobased alternatives to supplement production and address sustainability concerns, as less than 10% of the world's plastic is currently recycled. Biobased materials are products primarily derived from living matter (biomass), either occurring naturally or synthesized. These materials can include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. Various processes are used to convert biomass components into value-added products and fuels, which can be broadly classified as biochemical or thermochemical. Additionally, biotechnological processes involving plant breeding, fermentation, and conventional enzyme isolation are employed. As new bio-based materials emerge, they have the potential to compete with conventional materials, and this publication explores the opportunities for their use in existing and novel products.

There is a growing demand from consumers and regulatory bodies for bio-based chemicals, materials, polymers, plastics, paints, coatings, and fuels that exhibit high performance, good recyclability, and biodegradable properties. This demand is driving the transition towards more sustainable manufacturing practices and products, as industries seek to reduce their environmental impact and meet evolving consumer preferences.

"The Global Market for Bio-based and Sustainable Materials 2024-2035" offers a comprehensive overview of the rapidly growing field of biobased and sustainable materials. It provides in-depth insights into a wide array of innovative materials, such as biobased chemicals and intermediates sourced from plants, wastes, and microbial and mineral origins. The report presents a thorough analysis of the production processes, applications, and global market trends for essential biochemicals, including lysine, isosorbide, lactic acid, succinic acid, and many others. It also examines the current state and future prospects of the biobased chemicals market, highlighting key drivers, challenges, and opportunities.

The report offers a detailed assessment of the properties, production methods, and applications of synthetic biobased polymers, such as PLA, Bio-PET, and Bio-PP, as well as natural polymers like PHA and cellulose. The report analyzes the market dynamics, production capacities, and end-use markets for these sustainable alternatives to conventional plastics, providing valuable insights for manufacturers, suppliers, and investors.

Additionally, the report explores the potential of natural fiber plastics and composites, presenting a comprehensive analysis of various plant-based fibers, their properties, and applications across industries, including automotive, packaging, construction, and consumer goods. It evaluates the competitive landscape, market trends, and future outlook for this promising sector, enabling stakeholders to make informed decisions and capitalize on emerging opportunities.

Sustainable construction materials represent another key focus area of the report. It examines the latest trends and innovations in this field, such as hemp-based products, mycelium composites, green concrete, and advanced insulation solutions like aerogels. The report assesses the market drivers, challenges, and opportunities in the sustainable construction industry, providing valuable insights for companies looking to enhance their sustainability practices and gain a competitive edge.

The report also covers biobased packaging materials, sustainable textiles and apparel, biobased coatings and resins, biofuels, and sustainable electronics. It identifies key players, market trends, and growth potential across these industries, offering a comprehensive overview of the current market landscape and future prospects.

The report also provides in-depth company profiles, detailed market data, and expert analysis, making it an indispensable resource for businesses, investors, and stakeholders seeking to understand and capitalize on the immense potential of biobased and sustainable materials. Companies profiled include Aduro Clean Technologies, Agilyx, Alt.Leather, Alterra, Amsty, APK AG, Aquafil, Arcus, Arda Biomaterials, Avantium, Axens, BASF Chemcycling, Beyond Leather Materials ApS, BiologiQ, Biome Bioplastics, Biophilica, Bpacks, Braskem, Bucha Bio, Byogy Renewables, Caphenia, Carbios, CJ CheilJedang, DePoly, Dow, Earthodic, Eastman Chemical, Ecovative, Ensyn, EREMA Group GmbH, Evolved by Nature, Extracthive, ExxonMobil, FlexSea, FORGE Hydrocarbons Corporation, Fych Technologies, Garbo, Gozen Bioworks, gr3n SA, Hyundai Chemical, cytos, Ioniqa, Itero, Kelpi, Kvasir Technologies, Licella, LignoPure GmbH, MeduSoil, Modern Meadow, Mura Technology, MycoWorks, Natural Fiber Welding, Notpla, Origin Materials, Pack2Earth, PersiSKIN, Plastic Energy, Plastogaz SA, Polybion, ProjectEx, Polystyvert, Pyrowave, Recyc'ELIT, RePEaT Co., Ltd., revalyu Resources GmbH, SA-Dynamics, Solugen, Stora Enso, Strong By Form, Sulapac, UBQ Materials, UNCAGED Innovations, Verde Bioresins, and ZymoChem.

Report contents include:

  • Biobased Chemicals and Intermediates
    • Biorefineries
    • Bio-based Feedstock and Land Use
    • Plant-based (Starch, Sugar Crops, Lignocellulosic Biomass, Plant Oils, Non-Edible Milk)
    • Waste (Food, Agricultural, Forestry, Aquaculture/Fishing, Municipal Solid, Industrial, Waste Oils)
    • Microbial & Mineral Sources (Microalgae, Macroalgae, Mineral)
    • Gaseous (Biogas, Syngas, Off Gases)
    • Company Profiles
  • Biobased Polymers and Plastics
    • Drop-in Bio-based Plastics
    • Novel Bio-based Plastics
    • Biodegradable and Compostable Plastics
    • Types and Key Market Players
    • Synthetic Biobased Polymers (PLA, PET, PTT, PEF, PA, PBAT, PBS, PE, PP)
    • Natural Biobased Polymers (PHA, Cellulose, Protein-based, Algal, Fungal, Chitosan)
    • Production by Region
    • End Use Markets (Packaging, Consumer Products, Automotive, Construction, Textiles, Electronics, Agriculture)
    • Lignin
    • Company Profiles
  • Natural Fiber Plastics and Composites
    • Introduction
    • Types of Natural Fibers (Plants, Animal, Wood-based)
    • Processing and Treatment
    • Interface and Compatibility
    • Manufacturing Processes
    • Global Market (Automotive, Packaging, Construction, Appliances, Consumer Electronics, Furniture)
    • Competitive Landscape
    • Future Outlook
    • Revenues (by End Use Market, Material Type, Plastic Type, Region)
    • Company Profiles
  • Sustainable Construction Materials
    • Market Overview
    • Types (Hemp-based, Mycelium-based, Sustainable Concrete, Natural Fiber Composites, Sustainable Insulation, Carbon Capture and Utilization, Green Steel, Aerogels)
    • Markets and Applications
    • Company Profiles
  • Biobased Packaging Materials
    • Market Overview
    • Materials (Synthetic Bio-based, Natural Bio-based)
    • Applications (Paper and Board, Food Packaging)
    • Biobased Films and Coatings
    • Carbon Capture Derived Materials
    • Global Markets (Flexible, Rigid, Coatings and Films)
    • Company Profiles
  • Sustainable Textiles and Apparel
    • Types of Bio-based Fibers (Natural, Man-made)
    • Bio-based Leather
    • Markets
    • Global Market Revenues (by Region, End Use Market)
    • Company Profiles
  • Biobased Coatings and Resins
    • Overview (Biobased Epoxy, Polyurethane, Others)
    • Types
    • Global Revenues (by Types, Market)
    • Company Profiles
  • Biofuels
    • Comparison to Fossil Fuels
    • Role in the Circular Economy
    • Market Drivers and Challenges
    • Liquid Biofuels Market
    • Global Biofuels Market (Diesel Substitutes, Gasoline Substitutes)
    • SWOT Analysis
    • Comparison of Biofuel Costs by Type
    • Types (Solid, Liquid, Gaseous, Conventional, Advanced)
    • Feedstocks (First to Fourth Generation)
    • Hydrocarbon Biofuels (Biodiesel, Renewable Diesel, Bio-aviation Fuel, Bio-naphtha)
    • Alcohol Fuels (Biomethanol, Ethanol, Biobutanol)
    • Biomass-based Gas (Biomethane, Biosyngas, Biohydrogen)
    • Chemical Recycling for Biofuels
    • Electrofuels
    • Algae-derived Biofuels
    • Green Ammonia
    • Biofuels from Carbon Capture (CO2 Capture, Direct Air Capture, Carbon Utilization)
    • Bio-oils
    • Refuse Derived Fuels
    • Company Profiles
  • Sustainable Electronics
    • Overview
    • Green Electronics Manufacturing
    • Global Market (PCB Manufacturing, Sustainable PCBs, Sustainable ICs)
    • Company Profiles
  • Biobased Adhesives and Sealants
    • Overview
    • Types
    • Global Revenues (by Types, Market)
    • Company Profiles

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

2. INTRODUCTION

  • 2.1. Definition of Biobased and Sustainable Materials
  • 2.2. Importance and Benefits of Biobased and Sustainable Materials

3. BIOBASED CHEMICALS AND INTERMEDIATES

  • 3.1. BIOREFINERIES
  • 3.2. BIO-BASED FEEDSTOCK AND LAND USE
  • 3.3. PLANT-BASED
    • 3.3.1. STARCH
      • 3.3.1.1. Overview
      • 3.3.1.2. Sources
      • 3.3.1.3. Global production
      • 3.3.1.4. Lysine
        • 3.3.1.4.1. Source
        • 3.3.1.4.2. Applications
        • 3.3.1.4.3. Global production
      • 3.3.1.5. Glucose
        • 3.3.1.5.1. HMDA
          • 3.3.1.5.1.1. Overview
          • 3.3.1.5.1.2. Sources
          • 3.3.1.5.1.3. Applications
          • 3.3.1.5.1.4. Global production
        • 3.3.1.5.2. 1,5-diaminopentane (DA5)
          • 3.3.1.5.2.1. Overview
          • 3.3.1.5.2.2. Sources
          • 3.3.1.5.2.3. Applications
          • 3.3.1.5.2.4. Global production
        • 3.3.1.5.3. Sorbitol
          • 3.3.1.5.3.1. Isosorbide
            • 3.3.1.5.3.1.1. Overview
            • 3.3.1.5.3.1.2. Sources
            • 3.3.1.5.3.1.3. Applications
            • 3.3.1.5.3.1.4. Global production
        • 3.3.1.5.4. Lactic acid
          • 3.3.1.5.4.1. Overview
          • 3.3.1.5.4.2. D-lactic acid
          • 3.3.1.5.4.3. L-lactic acid
          • 3.3.1.5.4.4. Lactide
        • 3.3.1.5.5. Itaconic acid
          • 3.3.1.5.5.1. Overview
          • 3.3.1.5.5.2. Sources
          • 3.3.1.5.5.3. Applications
          • 3.3.1.5.5.4. Global production
        • 3.3.1.5.6. 3-HP
          • 3.3.1.5.6.1. Overview
          • 3.3.1.5.6.2. Sources
          • 3.3.1.5.6.3. Applications
          • 3.3.1.5.6.4. Global production
          • 3.3.1.5.6.5. Acrylic acid
            • 3.3.1.5.6.5.1. Overview
            • 3.3.1.5.6.5.2. Applications
            • 3.3.1.5.6.5.3. Global production
          • 3.3.1.5.6.6. 1,3-Propanediol (1,3-PDO)
            • 3.3.1.5.6.6.1. Overview
            • 3.3.1.5.6.6.2. Applications
            • 3.3.1.5.6.6.3. Global production
        • 3.3.1.5.7. Succinic Acid
          • 3.3.1.5.7.1. Overview
          • 3.3.1.5.7.2. Sources
          • 3.3.1.5.7.3. Applications
          • 3.3.1.5.7.4. Global production
          • 3.3.1.5.7.5. 1,4-Butanediol (1,4-BDO)
            • 3.3.1.5.7.5.1. Overview
            • 3.3.1.5.7.5.2. Applications
            • 3.3.1.5.7.5.3. Gobal production
          • 3.3.1.5.7.6. Tetrahydrofuran (THF)
            • 3.3.1.5.7.6.1. Overview
            • 3.3.1.5.7.6.2. Applications
            • 3.3.1.5.7.6.3. Global production
        • 3.3.1.5.8. Adipic acid
          • 3.3.1.5.8.1. Overview
          • 3.3.1.5.8.2. Applications
          • 3.3.1.5.8.3. Caprolactame
            • 3.3.1.5.8.3.1. Overview
            • 3.3.1.5.8.3.2. Applications
            • 3.3.1.5.8.3.3. Global production
        • 3.3.1.5.9. Isobutanol
          • 3.3.1.5.9.1. Overview
          • 3.3.1.5.9.2. Sources
          • 3.3.1.5.9.3. Applications
          • 3.3.1.5.9.4. Global production
          • 3.3.1.5.9.5. p-Xylene
            • 3.3.1.5.9.5.1. Overview
            • 3.3.1.5.9.5.2. Sources
            • 3.3.1.5.9.5.3. Applications
            • 3.3.1.5.9.5.4. Global production
            • 3.3.1.5.9.5.5. Terephthalic acid
            • 3.3.1.5.9.5.6. Overview
          • 3.3.1.5.10. 1,3 Proppanediol
            • 3.3.1.5.10.1.1. Overview
          • 3.3.1.5.10.2. Sources
          • 3.3.1.5.10.3. Applications
          • 3.3.1.5.10.4. Global production
        • 3.3.1.5.11. Monoethylene glycol (MEG)
          • 3.3.1.5.11.1. Overview
          • 3.3.1.5.11.2. Sources
          • 3.3.1.5.11.3. Applications
          • 3.3.1.5.11.4. Global production
        • 3.3.1.5.12. Ethanol
          • 3.3.1.5.12.1. Overview
          • 3.3.1.5.12.2. Sources
          • 3.3.1.5.12.3. Applications
          • 3.3.1.5.12.4. Global production
          • 3.3.1.5.12.5. Ethylene
            • 3.3.1.5.12.5.1. Overview
            • 3.3.1.5.12.5.2. Applications
            • 3.3.1.5.12.5.3. Global production
            • 3.3.1.5.12.5.4. Propylene
            • 3.3.1.5.12.5.5. Vinyl chloride
          • 3.3.1.5.12.6. Methly methacrylate
    • 3.3.2. SUGAR CROPS
      • 3.3.2.1. Saccharose
        • 3.3.2.1.1. Aniline
          • 3.3.2.1.1.1. Overview
          • 3.3.2.1.1.2. Applications
          • 3.3.2.1.1.3. Global production
        • 3.3.2.1.2. Fructose
          • 3.3.2.1.2.1. Overview
          • 3.3.2.1.2.2. Applications
          • 3.3.2.1.2.3. Global production
          • 3.3.2.1.2.4. 5-Hydroxymethylfurfural (5-HMF)
            • 3.3.2.1.2.4.1. Overview
            • 3.3.2.1.2.4.2. Applications
            • 3.3.2.1.2.4.3. Global production
          • 3.3.2.1.2.5. 5-Chloromethylfurfural (5-CMF)
            • 3.3.2.1.2.5.1. Overview
            • 3.3.2.1.2.5.2. Applications
            • 3.3.2.1.2.5.3. Global production
          • 3.3.2.1.2.6. Levulinic Acid
            • 3.3.2.1.2.6.1. Overview
            • 3.3.2.1.2.6.2. Applications
            • 3.3.2.1.2.6.3. Global production
          • 3.3.2.1.2.7. FDME
            • 3.3.2.1.2.7.1. Overview
            • 3.3.2.1.2.7.2. Applications
            • 3.3.2.1.2.7.3. Global production
          • 3.3.2.1.2.8. 2,5-FDCA
            • 3.3.2.1.2.8.1. Overview
            • 3.3.2.1.2.8.2. Applications
            • 3.3.2.1.2.8.3. Global production
    • 3.3.3. LIGNOCELLULOSIC BIOMASS
      • 3.3.3.1. Levoglucosenone
        • 3.3.3.1.1. Overview
        • 3.3.3.1.2. Applications
        • 3.3.3.1.3. Global production
      • 3.3.3.2. Hemicellulose
        • 3.3.3.2.1. Overview
        • 3.3.3.2.2. Biochemicals from hemicellulose
        • 3.3.3.2.3. Global production
        • 3.3.3.2.4. Furfural
          • 3.3.3.2.4.1. Overview
          • 3.3.3.2.4.2. Applications
          • 3.3.3.2.4.3. Global production
          • 3.3.3.2.4.4. Furfuyl alcohol
            • 3.3.3.2.4.4.1. Overview
            • 3.3.3.2.4.4.2. Applications
            • 3.3.3.2.4.4.3. Global production
      • 3.3.3.3. Lignin
        • 3.3.3.3.1. Overview
        • 3.3.3.3.2. Sources
        • 3.3.3.3.3. Applications
          • 3.3.3.3.3.1. Aromatic compounds
            • 3.3.3.3.3.1.1. Benzene, toluene and xylene
            • 3.3.3.3.3.1.2. Phenol and phenolic resins
            • 3.3.3.3.3.1.3. Vanillin
          • 3.3.3.3.3.2. Polymers
        • 3.3.3.3.4. Global production
    • 3.3.4. PLANT OILS
      • 3.3.4.1. Overview
      • 3.3.4.2. Glycerol
        • 3.3.4.2.1. Overview
        • 3.3.4.2.2. Applications
        • 3.3.4.2.3. Global production
        • 3.3.4.2.4. MPG
          • 3.3.4.2.4.1. Overview
          • 3.3.4.2.4.2. Applications
          • 3.3.4.2.4.3. Global production
        • 3.3.4.2.5. ECH
          • 3.3.4.2.5.1. Overview
          • 3.3.4.2.5.2. Applications
          • 3.3.4.2.5.3. Global production
      • 3.3.4.3. Fatty acids
        • 3.3.4.3.1. Overview
        • 3.3.4.3.2. Applications
        • 3.3.4.3.3. Global production
      • 3.3.4.4. Castor oil
        • 3.3.4.4.1. Overview
        • 3.3.4.4.2. Sebacic acid
          • 3.3.4.4.2.1. Overview
          • 3.3.4.4.2.2. Applications
          • 3.3.4.4.2.3. Global production
        • 3.3.4.4.3. 11-Aminoundecanoic acid (11-AA)
          • 3.3.4.4.3.1. Overview
          • 3.3.4.4.3.2. Applications
          • 3.3.4.4.3.3. Global production
      • 3.3.4.5. Dodecanedioic acid (DDDA)
        • 3.3.4.5.1. Overview
        • 3.3.4.5.2. Applications
        • 3.3.4.5.3. Global production
      • 3.3.4.6. Pentamethylene diisocyanate
        • 3.3.4.6.1. Overview
        • 3.3.4.6.2. Applications
        • 3.3.4.6.3. Global production
    • 3.3.5. NON-EDIBIBLE MILK
      • 3.3.5.1. Casein
        • 3.3.5.1.1. Overview
        • 3.3.5.1.2. Applications
        • 3.3.5.1.3. Global production
  • 3.4. WASTE
    • 3.4.1. Food waste
      • 3.4.1.1. Overview
      • 3.4.1.2. Products and applications
        • 3.4.1.2.1. Global production
    • 3.4.2. Agricultural waste
      • 3.4.2.1. Overview
      • 3.4.2.2. Products and applications
      • 3.4.2.3. Global production
    • 3.4.3. Forestry waste
      • 3.4.3.1. Overview
      • 3.4.3.2. Products and applications
      • 3.4.3.3. Global production
    • 3.4.4. Aquaculture/fishing waste
      • 3.4.4.1. Overview
      • 3.4.4.2. Products and applications
      • 3.4.4.3. Global production
    • 3.4.5. Municipal solid waste
      • 3.4.5.1. Overview
      • 3.4.5.2. Products and applications
      • 3.4.5.3. Global production
    • 3.4.6. Industrial waste
      • 3.4.6.1. Overview
    • 3.4.7. Waste oils
      • 3.4.7.1. Overview
      • 3.4.7.2. Products and applications
      • 3.4.7.3. Global production
  • 3.5. MICROBIAL & MINERAL SOURCES
    • 3.5.1. Microalgae
      • 3.5.1.1. Overview
      • 3.5.1.2. Products and applications
      • 3.5.1.3. Global production
    • 3.5.2. Macroalgae
      • 3.5.2.1. Overview
      • 3.5.2.2. Products and applications
      • 3.5.2.3. Global production
    • 3.5.3. Mineral sources
      • 3.5.3.1. Overview
      • 3.5.3.2. Products and applications
  • 3.6. GASEOUS
    • 3.6.1. Biogas
      • 3.6.1.1. Overview
      • 3.6.1.2. Products and applications
      • 3.6.1.3. Global production
    • 3.6.2. Syngas
      • 3.6.2.1. Overview
      • 3.6.2.2. Products and applications
      • 3.6.2.3. Global production
    • 3.6.3. Off gases - fermentation CO2, CO
      • 3.6.3.1. Overview
      • 3.6.3.2. Products and applications
  • 3.7. COMPANY PROFILES (115 company profiles)

4. BIOBASED POLYMERS AND PLASTICS

  • 4.1. Overview
    • 4.1.1. Drop-in bio-based plastics
    • 4.1.2. Novel bio-based plastics
  • 4.2. Biodegradable and compostable plastics
    • 4.2.1. Biodegradability
    • 4.2.2. Compostability
  • 4.3. Types
  • 4.4. Key market players
  • 4.5. Synthetic biobased polymers
    • 4.5.1. Polylactic acid (Bio-PLA)
      • 4.5.1.1. Market analysis
      • 4.5.1.2. Production
      • 4.5.1.3. Producers and production capacities, current and planned
        • 4.5.1.3.1. Lactic acid producers and production capacities
        • 4.5.1.3.2. PLA producers and production capacities
        • 4.5.1.3.3. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
    • 4.5.2. Polyethylene terephthalate (Bio-PET)
      • 4.5.2.1. Market analysis
      • 4.5.2.2. Producers and production capacities
      • 4.5.2.3. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
    • 4.5.3. Polytrimethylene terephthalate (Bio-PTT)
      • 4.5.3.1. Market analysis
      • 4.5.3.2. Producers and production capacities
      • 4.5.3.3. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
    • 4.5.4. Polyethylene furanoate (Bio-PEF)
      • 4.5.4.1. Market analysis
      • 4.5.4.2. Comparative properties to PET
      • 4.5.4.3. Producers and production capacities
        • 4.5.4.3.1. FDCA and PEF producers and production capacities
        • 4.5.4.3.2. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes)
    • 4.5.5. Polyamides (Bio-PA)
      • 4.5.5.1. Market analysis
      • 4.5.5.2. Producers and production capacities
      • 4.5.5.3. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
    • 4.5.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
      • 4.5.6.1. Market analysis
      • 4.5.6.2. Producers and production capacities
      • 4.5.6.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
    • 4.5.7. Polybutylene succinate (PBS) and copolymers
      • 4.5.7.1. Market analysis
      • 4.5.7.2. Producers and production capacities
      • 4.5.7.3. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
    • 4.5.8. Polyethylene (Bio-PE)
      • 4.5.8.1. Market analysis
      • 4.5.8.2. Producers and production capacities
      • 4.5.8.3. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes)
    • 4.5.9. Polypropylene (Bio-PP)
      • 4.5.9.1. Market analysis
      • 4.5.9.2. Producers and production capacities
      • 4.5.9.3. Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)
  • 4.6. Natural biobased polymers
    • 4.6.1. Polyhydroxyalkanoates (PHA)
      • 4.6.1.1. Technology description
      • 4.6.1.2. Types
        • 4.6.1.2.1. PHB
        • 4.6.1.2.2. PHBV
      • 4.6.1.3. Synthesis and production processes
      • 4.6.1.4. Market analysis
      • 4.6.1.5. Commercially available PHAs
      • 4.6.1.6. Markets for PHAs
        • 4.6.1.6.1. Packaging
        • 4.6.1.6.2. Cosmetics
          • 4.6.1.6.2.1. PHA microspheres
        • 4.6.1.6.3. Medical
          • 4.6.1.6.3.1. Tissue engineering
          • 4.6.1.6.3.2. Drug delivery
        • 4.6.1.6.4. Agriculture
          • 4.6.1.6.4.1. Mulch film
          • 4.6.1.6.4.2. Grow bags
      • 4.6.1.7. Producers and production capacities
    • 4.6.2. Cellulose
      • 4.6.2.1. Microfibrillated cellulose (MFC)
        • 4.6.2.1.1. Market analysis
        • 4.6.2.1.2. Producers and production capacities
      • 4.6.2.2. Nanocellulose
        • 4.6.2.2.1. Cellulose nanocrystals
          • 4.6.2.2.1.1. Synthesis
          • 4.6.2.2.1.2. Properties
          • 4.6.2.2.1.3. Production
          • 4.6.2.2.1.4. Applications
          • 4.6.2.2.1.5. Market analysis
          • 4.6.2.2.1.6. Producers and production capacities
        • 4.6.2.2.2. Cellulose nanofibers
          • 4.6.2.2.2.1. Applications
          • 4.6.2.2.2.2. Market analysis
          • 4.6.2.2.2.3. Producers and production capacities
        • 4.6.2.2.3. Bacterial Nanocellulose (BNC)
          • 4.6.2.2.3.1. Production
          • 4.6.2.2.3.2. Applications
    • 4.6.3. Protein-based bioplastics
      • 4.6.3.1. Types, applications and producers
    • 4.6.4. Algal and fungal
      • 4.6.4.1. Algal
        • 4.6.4.1.1. Advantages
        • 4.6.4.1.2. Production
        • 4.6.4.1.3. Producers
      • 4.6.4.2. Mycelium
        • 4.6.4.2.1. Properties
        • 4.6.4.2.2. Applications
        • 4.6.4.2.3. Commercialization
    • 4.6.5. Chitosan
      • 4.6.5.1. Technology description
  • 4.7. Production by region
    • 4.7.1. North America
    • 4.7.2. Europe
    • 4.7.3. Asia-Pacific
      • 4.7.3.1. China
      • 4.7.3.2. Japan
      • 4.7.3.3. Thailand
      • 4.7.3.4. Indonesia
    • 4.7.4. Latin America
  • 4.8. End use markets
    • 4.8.1. Packaging
      • 4.8.1.1. Processes for bioplastics in packaging
      • 4.8.1.2. Applications
      • 4.8.1.3. Flexible packaging
        • 4.8.1.3.1. Production volumes 2019-2035
      • 4.8.1.4. Rigid packaging
        • 4.8.1.4.1. Production volumes 2019-2035
    • 4.8.2. Consumer products
      • 4.8.2.1. Applications
      • 4.8.2.2. Production volumes 2019-2035
    • 4.8.3. Automotive
      • 4.8.3.1. Applications
      • 4.8.3.2. Production volumes 2019-2035
    • 4.8.4. Construction
      • 4.8.4.1. Applications
      • 4.8.4.2. Production volumes 2019-2035
    • 4.8.5. Textiles
      • 4.8.5.1. Apparel
      • 4.8.5.2. Footwear
      • 4.8.5.3. Medical textiles
      • 4.8.5.4. Production volumes 2019-2035
    • 4.8.6. Electronics
      • 4.8.6.1. Applications
      • 4.8.6.2. Production volumes 2019-2035
    • 4.8.7. Agriculture and horticulture
      • 4.8.7.1. Production volumes 2019-2035
  • 4.9. Lignin
    • 4.9.1. Introduction
      • 4.9.1.1. What is lignin?
        • 4.9.1.1.1. Lignin structure
      • 4.9.1.2. Types of lignin
        • 4.9.1.2.1. Sulfur containing lignin
        • 4.9.1.2.2. Sulfur-free lignin from biorefinery process
      • 4.9.1.3. Properties
      • 4.9.1.4. The lignocellulose biorefinery
      • 4.9.1.5. Markets and applications
      • 4.9.1.6. Challenges for using lignin
    • 4.9.2. Lignin production processes
      • 4.9.2.1. Lignosulphonates
      • 4.9.2.2. Kraft Lignin
        • 4.9.2.2.1. LignoBoost process
        • 4.9.2.2.2. LignoForce method
        • 4.9.2.2.3. Sequential Liquid Lignin Recovery and Purification
        • 4.9.2.2.4. A-Recovery+
      • 4.9.2.3. Soda lignin
      • 4.9.2.4. Biorefinery lignin
        • 4.9.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and processes
      • 4.9.2.5. Organosolv lignins
      • 4.9.2.6. Hydrolytic lignin
    • 4.9.3. Markets for lignin
      • 4.9.3.1. Market drivers and trends for lignin
      • 4.9.3.2. Production capacities
        • 4.9.3.2.1. Technical lignin availability (dry ton/y)
        • 4.9.3.2.2. Biomass conversion (Biorefinery)
      • 4.9.3.3. Estimated consumption of lignin
      • 4.9.3.4. Prices
      • 4.9.3.5. Heat and power energy
      • 4.9.3.6. Pyrolysis and syngas
      • 4.9.3.7. Aromatic compounds
        • 4.9.3.7.1. Benzene, toluene and xylene
        • 4.9.3.7.2. Phenol and phenolic resins
        • 4.9.3.7.3. Vanillin
      • 4.9.3.8. Plastics and polymers
  • 4.10. COMPANY PROFILES (517 company profiles)

5. NATURAL FIBER PLASTICS AND COMPOSITES

  • 5.1. Introduction
    • 5.1.1. What are natural fiber materials?
    • 5.1.2. Benefits of natural fibers over synthetic
    • 5.1.3. Markets and applications for natural fibers
    • 5.1.4. Commercially available natural fiber products
    • 5.1.5. Market drivers for natural fibers
    • 5.1.6. Market challenges
    • 5.1.7. Wood flour as a plastic filler
  • 5.2. Types of natural fibers in plastic composites
    • 5.2.1. Plants
      • 5.2.1.1. Seed fibers
        • 5.2.1.1.1. Kapok
        • 5.2.1.1.2. Luffa
      • 5.2.1.2. Bast fibers
        • 5.2.1.2.1. Jute
        • 5.2.1.2.2. Hemp
        • 5.2.1.2.3. Flax
        • 5.2.1.2.4. Ramie
        • 5.2.1.2.5. Kenaf
      • 5.2.1.3. Leaf fibers
        • 5.2.1.3.1. Sisal
        • 5.2.1.3.2. Abaca
      • 5.2.1.4. Fruit fibers
        • 5.2.1.4.1. Coir
        • 5.2.1.4.2. Banana
        • 5.2.1.4.3. Pineapple
      • 5.2.1.5. Stalk fibers from agricultural residues
        • 5.2.1.5.1. Rice fiber
        • 5.2.1.5.2. Corn
      • 5.2.1.6. Cane, grasses and reed
        • 5.2.1.6.1. Switchgrass
        • 5.2.1.6.2. Sugarcane (agricultural residues)
        • 5.2.1.6.3. Bamboo
        • 5.2.1.6.4. Fresh grass (green biorefinery)
      • 5.2.1.7. Modified natural polymers
        • 5.2.1.7.1. Mycelium
        • 5.2.1.7.2. Chitosan
        • 5.2.1.7.3. Alginate
    • 5.2.2. Animal (fibrous protein)
      • 5.2.2.1. Silk fiber
    • 5.2.3. Wood-based natural fibers
      • 5.2.3.1. Cellulose fibers
        • 5.2.3.1.1. Market overview
        • 5.2.3.1.2. Producers
      • 5.2.3.2. Microfibrillated cellulose (MFC)
        • 5.2.3.2.1. Market overview
        • 5.2.3.2.2. Producers
      • 5.2.3.3. Cellulose nanocrystals
        • 5.2.3.3.1. Market overview
        • 5.2.3.3.2. Producers
      • 5.2.3.4. Cellulose nanofibers
        • 5.2.3.4.1. Market overview
        • 5.2.3.4.2. Producers
  • 5.3. Processing and Treatment of Natural Fibers
  • 5.4. Interface and Compatibility of Natural Fibers with Plastic Matrices
    • 5.4.1. Adhesion and Bonding
    • 5.4.2. Moisture Absorption and Dimensional Stability
    • 5.4.3. Thermal Expansion and Compatibility
    • 5.4.4. Dispersion and Distribution
    • 5.4.5. Matrix Selection
    • 5.4.6. Fiber Content and Alignment
    • 5.4.7. Manufacturing Techniques
  • 5.5. Manufacturing processes
    • 5.5.1. Injection molding
    • 5.5.2. Compression moulding
    • 5.5.3. Extrusion
    • 5.5.4. Thermoforming
    • 5.5.5. Thermoplastic pultrusion
    • 5.5.6. Additive manufacturing (3D printing)
  • 5.6. Global market for natural fibers
    • 5.6.1. Automotive
      • 5.6.1.1. Applications
      • 5.6.1.2. Commercial production
      • 5.6.1.3. SWOT analysis
    • 5.6.2. Packaging
      • 5.6.2.1. Applications
      • 5.6.2.2. SWOT analysis
    • 5.6.3. Construction
      • 5.6.3.1. Applications
      • 5.6.3.2. SWOT analysis
    • 5.6.4. Appliances
      • 5.6.4.1. Applications
      • 5.6.4.2. SWOT analysis
    • 5.6.5. Consumer electronics
      • 5.6.5.1. Applications
      • 5.6.5.2. SWOT analysis
    • 5.6.6. Furniture
      • 5.6.6.1. Applications
      • 5.6.6.2. SWOT analysis
  • 5.7. Competitive landscape
  • 5.8. Future outlook
  • 5.9. Revenues
    • 5.9.1. By end use market
    • 5.9.2. By Material Type
    • 5.9.3. By Plastic Type
    • 5.9.4. By region
  • 5.10. Company profiles (67 company profiles)

6. SUSTAINABLE CONSTRUCTION MATERIALS

  • 6.1. Market overview
    • 6.1.1. Benefits of Sustainable Construction
    • 6.1.2. Global Trends and Drivers
  • 6.2. Global revenues
    • 6.2.1. By materials type
    • 6.2.2. By market
  • 6.3. Types of sustainable construction materials
    • 6.3.1. Established bio-based construction materials
    • 6.3.2. Hemp-based Materials
      • 6.3.2.1. Hemp Concrete (Hempcrete)
      • 6.3.2.2. Hemp Fiberboard
    • 6.3.3. Hemp Insulation
    • 6.3.4. Mycelium-based Materials
      • 6.3.4.1. Insulation
      • 6.3.4.2. Structural Elements
      • 6.3.4.3. Acoustic Panels
      • 6.3.4.4. Decorative Elements
    • 6.3.5. Sustainable Concrete and Cement Alternatives
      • 6.3.5.1. Geopolymer Concrete
      • 6.3.5.2. Recycled Aggregate Concrete
      • 6.3.5.3. Lime-Based Materials
      • 6.3.5.4. Self-healing concrete
        • 6.3.5.4.1. Bioconcrete
        • 6.3.5.4.2. Fiber concrete
      • 6.3.5.5. Microalgae biocement
      • 6.3.5.6. Carbon-negative concrete
      • 6.3.5.7. Biomineral binders
    • 6.3.6. Natural Fiber Composites
      • 6.3.6.1. Types of Natural Fibers
      • 6.3.6.2. Properties
      • 6.3.6.3. Applications in Construction
    • 6.3.7. Cellulose nanofibers
      • 6.3.7.1. Sandwich composites
      • 6.3.7.2. Cement additives
      • 6.3.7.3. Pump primers
      • 6.3.7.4. Insulation materials
      • 6.3.7.5. Coatings and paints
  • 6.3.7.6 3D printing materials
    • 6.3.8. Sustainable Insulation Materials
      • 6.3.8.1. Types of sustainable insulation materials
      • 6.3.8.2. Aerogel Insulation
        • 6.3.8.2.1. Silica aerogels
          • 6.3.8.2.1.1. Properties
          • 6.3.8.2.1.2. Thermal conductivity
          • 6.3.8.2.1.3. Mechanical
          • 6.3.8.2.1.4. Silica aerogel precursors
          • 6.3.8.2.1.5. Products
            • 6.3.8.2.1.5.1. Monoliths
            • 6.3.8.2.1.5.2. Powder
            • 6.3.8.2.1.5.3. Granules
            • 6.3.8.2.1.5.4. Blankets
            • 6.3.8.2.1.5.5. Aerogel boards
            • 6.3.8.2.1.5.6. Aerogel renders
          • 6.3.8.2.1.6. 3D printing of aerogels
          • 6.3.8.2.1.7. Silica aerogel from sustainable feedstocks
          • 6.3.8.2.1.8. Silica composite aerogels
            • 6.3.8.2.1.8.1. Organic crosslinkers
          • 6.3.8.2.1.9. Cost of silica aerogels
          • 6.3.8.2.1.10. Main players
        • 6.3.8.2.2. Aerogel-like foam materials
          • 6.3.8.2.2.1. Properties
          • 6.3.8.2.2.2. Applications
        • 6.3.8.2.3. Metal oxide aerogels
        • 6.3.8.2.4. Organic aerogels
          • 6.3.8.2.4.1. Polymer aerogels
        • 6.3.8.2.5. Biobased and sustainable aerogels (bio-aerogels)
          • 6.3.8.2.5.1. Cellulose aerogels
            • 6.3.8.2.5.1.1. Cellulose nanofiber (CNF) aerogels
            • 6.3.8.2.5.1.2. Cellulose nanocrystal aerogels
            • 6.3.8.2.5.1.3. Bacterial nanocellulose aerogels
          • 6.3.8.2.5.2. Lignin aerogels
          • 6.3.8.2.5.3. Alginate aerogels
          • 6.3.8.2.5.4. Starch aerogels
          • 6.3.8.2.5.5. Chitosan aerogels
        • 6.3.8.2.6. Carbon aerogels
          • 6.3.8.2.6.1. Carbon nanotube aerogels
          • 6.3.8.2.6.2. Graphene and graphite aerogels
        • 6.3.8.2.7. Additive manufacturing (3D printing)
          • 6.3.8.2.7.1. Carbon nitride
          • 6.3.8.2.7.2. Gold
          • 6.3.8.2.7.3. Cellulose
          • 6.3.8.2.7.4. Graphene oxide
        • 6.3.8.2.8. Hybrid aerogels
  • 6.4. Carbon capture and utilization
    • 6.4.1. Overview
    • 6.4.2. Market structure
    • 6.4.3. CCUS technologies in the cement industry
    • 6.4.4. Products
      • 6.4.4.1. Carbonated aggregates
      • 6.4.4.2. Additives during mixing
      • 6.4.4.3. Carbonates from natural minerals
      • 6.4.4.4. Carbonates from waste
    • 6.4.5. Concrete curing
    • 6.4.6. Costs
    • 6.4.7. Challenges
  • 6.5. Green steel
    • 6.5.1. Current Steelmaking processes
    • 6.5.2. Decarbonization target and policies
      • 6.5.2.1. EU Carbon Border Adjustment Mechanism (CBAM)
    • 6.5.3. Advances in clean production technologies
    • 6.5.4. Production technologies
      • 6.5.4.1. The role of hydrogen
      • 6.5.4.2. Comparative analysis
      • 6.5.4.3. Hydrogen Direct Reduced Iron (DRI)
      • 6.5.4.4. Electrolysis
      • 6.5.4.5. Carbon Capture, Utilization and Storage (CCUS)
      • 6.5.4.6. Biochar replacing coke
      • 6.5.4.7. Hydrogen Blast Furnace
      • 6.5.4.8. Renewable energy powered processes
      • 6.5.4.9. Flash ironmaking
      • 6.5.4.10. Hydrogen Plasma Iron Ore Reduction
      • 6.5.4.11. Ferrous Bioprocessing
      • 6.5.4.12. Microwave Processing
      • 6.5.4.13. Additive Manufacturing
      • 6.5.4.14. Technology readiness level (TRL)
    • 6.5.5. Properties
  • 6.6. Markets and applications
    • 6.6.1. Residential Buildings
    • 6.6.2. Commercial and Office Buildings
    • 6.6.3. Infrastructure
  • 6.7. Company profiles (136 company profiles)

7. BIOBASED PACKAGING MATERIALS

  • 7.1. Market overview
    • 7.1.1. Current global packaging market and materials
    • 7.1.2. Market trends
    • 7.1.3. Drivers for recent growth in bioplastics in packaging
    • 7.1.4. Challenges for bio-based and sustainable packaging
  • 7.2. Materials
    • 7.2.1. Materials innovation
    • 7.2.2. Active packaging
    • 7.2.3. Monomaterial packaging
    • 7.2.4. Conventional polymer materials used in packaging
      • 7.2.4.1. Polyolefins: Polypropylene and polyethylene
      • 7.2.4.2. PET and other polyester polymers
      • 7.2.4.3. Renewable and bio-based polymers for packaging
      • 7.2.4.4. Comparison of synthetic fossil-based and bio-based polymers
      • 7.2.4.5. Processes for bioplastics in packaging
      • 7.2.4.6. End-of-life treatment of bio-based and sustainable packaging
  • 7.3. Synthetic bio-based packaging materials
    • 7.3.1. Polylactic acid (Bio-PLA)
      • 7.3.1.1. Market analysis
      • 7.3.1.2. Producers and production capacities, current and planned
        • 7.3.1.2.1. Lactic acid producers and production capacities
        • 7.3.1.2.2. LA producers and production capacities
    • 7.3.2. Polyethylene terephthalate (Bio-PET)
      • 7.3.2.1. Market analysis
      • 7.3.2.2. Producers and production capacities
    • 7.3.3. Polytrimethylene terephthalate (Bio-PTT)
      • 7.3.3.1. Market analysis
      • 7.3.3.2. Producers and production capacities
    • 7.3.4. Polyethylene furanoate (Bio-PEF)
      • 7.3.4.1. Market analysis
      • 7.3.4.2. Comparative properties to PET
      • 7.3.4.3. Producers and production capacities
        • 7.3.4.3.1. FDCA and PEF producers and production capacities
    • 7.3.5. Polyamides (Bio-PA)
      • 7.3.5.1. Market analysis
      • 7.3.5.2. Producers and production capacities
    • 7.3.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
      • 7.3.6.1. Market analysis
      • 7.3.6.2. Producers and production capacities
    • 7.3.7. Polybutylene succinate (PBS) and copolymers
      • 7.3.7.1. Market analysis
      • 7.3.7.2. Producers and production capacities
    • 7.3.8. Polyethylene furanoate (Bio-PEF)
      • 7.3.8.1. Market analysis
      • 7.3.8.2. Comparative properties to PET
      • 7.3.8.3. Producers and production capacities
        • 7.3.8.3.1. FDCA and PEF producers and production capacities
        • 7.3.8.3.2. Polyethylene furanoate (Bio-PEF) production capacities 2019-2035 (1,000 tons)
    • 7.3.9. Polyethylene (Bio-PE)
      • 7.3.9.1. Market analysis
      • 7.3.9.2. Producers and production capacities
    • 7.3.10. Polypropylene (Bio-PP)
      • 7.3.10.1. Market analysis
      • 7.3.10.2. Producers and production capacities
  • 7.4. Natural bio-based packaging materials
    • 7.4.1. Polyhydroxyalkanoates (PHA)
      • 7.4.1.1. Technology description
      • 7.4.1.2. Types
        • 7.4.1.2.1. PHB
        • 7.4.1.2.2. PHBV
      • 7.4.1.3. Synthesis and production processes
      • 7.4.1.4. Market analysis
      • 7.4.1.5. Commercially available PHAs
      • 7.4.1.6. PHAS in packaging
      • 7.4.1.7. PHA production capacities 2019-2035 (1,000 tons)
    • 7.4.2. Starch-based blends
      • 7.4.2.1. Properties
      • 7.4.2.2. Applications in packaging
    • 7.4.3. Cellulose
      • 7.4.3.1. Feedstocks
        • 7.4.3.1.1. Wood
        • 7.4.3.1.2. Plant
        • 7.4.3.1.3. Tunicate
        • 7.4.3.1.4. Algae
        • 7.4.3.1.5. Bacteria
      • 7.4.3.2. Microfibrillated cellulose (MFC)
        • 7.4.3.2.1. Properties
      • 7.4.3.3. Nanocellulose
        • 7.4.3.3.1. Cellulose nanocrystals
          • 7.4.3.3.1.1. Applications in packaging
        • 7.4.3.3.2. Cellulose nanofibers
          • 7.4.3.3.2.1. Applications in packaging
            • 7.4.3.3.2.1.1. Reinforcement and barrier
            • 7.4.3.3.2.1.2. Biodegradable food packaging foil and films
            • 7.4.3.3.2.1.3. Paperboard coatings
        • 7.4.3.3.3. Bacterial Nanocellulose (BNC)
          • 7.4.3.3.3.1. Applications in packaging
    • 7.4.4. Protein-based bioplastics in packaging
    • 7.4.5. Lipids and waxes for packaging
    • 7.4.6. Seaweed-based packaging
      • 7.4.6.1. Production
      • 7.4.6.2. Applications in packaging
      • 7.4.6.3. Producers
    • 7.4.7. Mycelium
      • 7.4.7.1. Applications in packaging
    • 7.4.8. Chitosan
      • 7.4.8.1. Applications in packaging
    • 7.4.9. Bio-naphtha
      • 7.4.9.1. Overview
      • 7.4.9.2. Markets and applications
  • 7.5. Applications
    • 7.5.1. Paper and board packaging
    • 7.5.2. Food packaging
      • 7.5.2.1. Bio-Based films and trays
      • 7.5.2.2. Bio-Based pouches and bags
      • 7.5.2.3. Bio-Based textiles and nets
      • 7.5.2.4. Bioadhesives
        • 7.5.2.4.1. Starch
        • 7.5.2.4.2. Cellulose
        • 7.5.2.4.3. Protein-Based
      • 7.5.2.5. Barrier coatings and films
        • 7.5.2.5.1. Polysaccharides
          • 7.5.2.5.1.1. Chitin
          • 7.5.2.5.1.2. Chitosan
          • 7.5.2.5.1.3. Starch
        • 7.5.2.5.2. Poly(lactic acid) (PLA)
        • 7.5.2.5.3. Poly(butylene Succinate)
        • 7.5.2.5.4. Functional Lipid and Proteins Based Coatings
      • 7.5.2.6. Active and Smart Food Packaging
        • 7.5.2.6.1. Active Materials and Packaging Systems
        • 7.5.2.6.2. Intelligent and Smart Food Packaging
      • 7.5.2.7. Antimicrobial films and agents
        • 7.5.2.7.1. Natural
        • 7.5.2.7.2. Inorganic nanoparticles
        • 7.5.2.7.3. Biopolymers
      • 7.5.2.8. Bio-based Inks and Dyes
      • 7.5.2.9. Edible films and coatings
  • 7.6. Biobased films and coatings in packaging
    • 7.6.1. Challenges using bio-based paints and coatings
    • 7.6.2. Types of bio-based coatings and films in packaging
      • 7.6.2.1. Polyurethane coatings
        • 7.6.2.1.1. Properties
        • 7.6.2.1.2. Bio-based polyurethane coatings
        • 7.6.2.1.3. Products
      • 7.6.2.2. Acrylate resins
        • 7.6.2.2.1. Properties
        • 7.6.2.2.2. Bio-based acrylates
        • 7.6.2.2.3. Products
      • 7.6.2.3. Polylactic acid (Bio-PLA)
        • 7.6.2.3.1. Properties
        • 7.6.2.3.2. Bio-PLA coatings and films
      • 7.6.2.4. Polyhydroxyalkanoates (PHA) coatings
      • 7.6.2.5. Cellulose coatings and films
        • 7.6.2.5.1. Microfibrillated cellulose (MFC)
        • 7.6.2.5.2. Cellulose nanofibers
          • 7.6.2.5.2.1. Properties
          • 7.6.2.5.2.2. Product developers
      • 7.6.2.6. Lignin coatings
      • 7.6.2.7. Protein-based biomaterials for coatings
        • 7.6.2.7.1. Plant derived proteins
        • 7.6.2.7.2. Animal origin proteins
  • 7.7. Carbon capture derived materials for packaging
    • 7.7.1. Benefits of carbon utilization for plastics feedstocks
    • 7.7.2. CO2-derived polymers and plastics
    • 7.7.3. CO2 utilization products
  • 7.8. Global biobased packaging markets
    • 7.8.1. Flexible packaging
    • 7.8.2. Rigid packaging
    • 7.8.3. Coatings and films
  • 7.9. Company profiles (203 company profiles)

8. SUSTAINABLE TEXTILES AND APPAREL

  • 8.1. Types of bio-based fibres
    • 8.1.1. Natural fibres
    • 8.1.2. Main-made bio-based fibres
  • 8.2. Bio-based synthetics
  • 8.3. Recyclability of bio-based fibres
  • 8.4. Lyocell
  • 8.5. Bacterial cellulose
  • 8.6. Algae textiles
  • 8.7. Bio-based leather
    • 8.7.1. Properties of bio-based leathers
      • 8.7.1.1. Tear strength
      • 8.7.1.2. Tensile strength
      • 8.7.1.3. Bally flexing
    • 8.7.2. Comparison with conventional leathers
    • 8.7.3. Comparative analysis of bio-based leathers
    • 8.7.4. Plant-based leather
      • 8.7.4.1. Overview
      • 8.7.4.2. Production processes
        • 8.7.4.2.1. Feedstocks
          • 8.7.4.2.1.1. Agriculture Residues
          • 8.7.4.2.1.2. Food Processing Waste
          • 8.7.4.2.1.3. Invasive Plants
          • 8.7.4.2.1.4. Culture-Grown Inputs
        • 8.7.4.2.2. Textile-Based
        • 8.7.4.2.3. Bio-Composite
      • 8.7.4.3. Products
      • 8.7.4.4. Market players
    • 8.7.5. Mycelium leather
      • 8.7.5.1. Overview
      • 8.7.5.2. Production process
        • 8.7.5.2.1. Growth conditions
        • 8.7.5.2.2. Tanning Mycelium Leather
        • 8.7.5.2.3. Dyeing Mycelium Leather
      • 8.7.5.3. Products
      • 8.7.5.4. Market players
    • 8.7.6. Microbial leather
      • 8.7.6.1. Overview
      • 8.7.6.2. Production process
      • 8.7.6.3. Fermentation conditions
      • 8.7.6.4. Harvesting
      • 8.7.6.5. Products
      • 8.7.6.6. Market players
    • 8.7.7. Lab grown leather
      • 8.7.7.1. Overview
      • 8.7.7.2. Production process
      • 8.7.7.3. Products
      • 8.7.7.4. Market players
    • 8.7.8. Protein-based leather
      • 8.7.8.1. Overview
      • 8.7.8.2. Production process
      • 8.7.8.3. Commercial activity
    • 8.7.9. Sustainable textiles coatings and dyes
      • 8.7.9.1. Overview
        • 8.7.9.1.1. Coatings
        • 8.7.9.1.2. Dyes
      • 8.7.9.2. Commercial activity
  • 8.8. Markets
    • 8.8.1. Footwear
    • 8.8.2. Fashion & Accessories
    • 8.8.3. Automotive & Transport
    • 8.8.4. Furniture
  • 8.9. Global market revenues
    • 8.9.1. By region
    • 8.9.2. By end use market
  • 8.10. Company profiles (66 company profiles)

9. BIOBASED COATINGS AND RESINS

  • 9.1. Drop-in replacements
  • 9.2. Bio-based resins
  • 9.3. Reducing carbon footprint in industrial and protective coatings
  • 9.4. Market drivers
  • 9.5. Challenges using bio-based coatings
  • 9.6. Types
    • 9.6.1. Eco-friendly coatings technologies
      • 9.6.1.1. UV-cure
      • 9.6.1.2. Waterborne coatings
      • 9.6.1.3. Treatments with less or no solvents
      • 9.6.1.4. Hyperbranched polymers for coatings
      • 9.6.1.5. Powder coatings
      • 9.6.1.6. High solid (HS) coatings
      • 9.6.1.7. Use of bio-based materials in coatings
        • 9.6.1.7.1. Biopolymers
        • 9.6.1.7.2. Coatings based on agricultural waste
        • 9.6.1.7.3. Vegetable oils and fatty acids
        • 9.6.1.7.4. Proteins
        • 9.6.1.7.5. Cellulose
        • 9.6.1.7.6. Plant-Based wax coatings
    • 9.6.2. Barrier coatings
      • 9.6.2.1. Polysaccharides
        • 9.6.2.1.1. Chitin
        • 9.6.2.1.2. Chitosan
        • 9.6.2.1.3. Starch
      • 9.6.2.2. Poly(lactic acid) (PLA)
      • 9.6.2.3. Poly(butylene Succinate
      • 9.6.2.4. Functional Lipid and Proteins Based Coatings
    • 9.6.3. Alkyd coatings
      • 9.6.3.1. Alkyd resin properties
      • 9.6.3.2. Bio-based alkyd coatings
      • 9.6.3.3. Products
    • 9.6.4. Polyurethane coatings
      • 9.6.4.1. Properties
      • 9.6.4.2. Bio-based polyurethane coatings
        • 9.6.4.2.1. Bio-based polyols
        • 9.6.4.2.2. Non-isocyanate polyurethane (NIPU)
      • 9.6.4.3. Products
    • 9.6.5. Epoxy coatings
      • 9.6.5.1. Properties
      • 9.6.5.2. Bio-based epoxy coatings
      • 9.6.5.3. Products
    • 9.6.6. Acrylate resins
      • 9.6.6.1. Properties
      • 9.6.6.2. Bio-based acrylates
      • 9.6.6.3. Products
    • 9.6.7. Polylactic acid (Bio-PLA)
      • 9.6.7.1. Properties
      • 9.6.7.2. Bio-PLA coatings and films
    • 9.6.8. Polyhydroxyalkanoates (PHA)
      • 9.6.8.1. Properties
      • 9.6.8.2. PHA coatings
      • 9.6.8.3. Commercially available PHAs
    • 9.6.9. Cellulose
      • 9.6.9.1. Microfibrillated cellulose (MFC)
        • 9.6.9.1.1. Properties
        • 9.6.9.1.2. Applications in coatings
      • 9.6.9.2. Cellulose nanofibers
        • 9.6.9.2.1. Properties
        • 9.6.9.2.2. Applications in coatings
      • 9.6.9.3. Cellulose nanocrystals
      • 9.6.9.4. Bacterial Nanocellulose (BNC)
    • 9.6.10. Rosins
    • 9.6.11. Bio-based carbon black
      • 9.6.11.1. Lignin-based
      • 9.6.11.2. Algae-based
    • 9.6.12. Lignin coatings
    • 9.6.13. Edible films and coatings
    • 9.6.14. Antimicrobial films and agents
      • 9.6.14.1. Natural
      • 9.6.14.2. Inorganic nanoparticles
      • 9.6.14.3. Biopolymers
    • 9.6.15. Nanocoatings
    • 9.6.16. Protein-based biomaterials for coatings
      • 9.6.16.1. Plant derived proteins
      • 9.6.16.2. Animal origin proteins
    • 9.6.17. Algal coatings
    • 9.6.18. Polypeptides
  • 9.7. Global revenues
    • 9.7.1. By types
    • 9.7.2. By market
  • 9.8. Company profiles (167 company profiles)

10. BIOFUELS

  • 10.1. Comparison to fossil fuels
  • 10.2. Role in the circular economy
  • 10.3. Market drivers
  • 10.4. Market challenges
  • 10.5. Liquid biofuels market
    • 10.5.1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022
    • 10.5.2. Liquid biofuels market 2020-2035, by type and production
  • 10.6. The global biofuels market
    • 10.6.1. Diesel substitutes and alternatives
    • 10.6.2. Gasoline substitutes and alternatives
  • 10.7. SWOT analysis: Biofuels market
  • 10.8. Comparison of biofuel costs 2023, by type
  • 10.9. Types
    • 10.9.1. Solid Biofuels
    • 10.9.2. Liquid Biofuels
    • 10.9.3. Gaseous Biofuels
    • 10.9.4. Conventional Biofuels
    • 10.9.5. Advanced Biofuels
  • 10.10. Feedstocks
    • 10.10.1. First-generation (1-G)
    • 10.10.2. Second-generation (2-G)
      • 10.10.2.1. Lignocellulosic wastes and residues
      • 10.10.2.2. Biorefinery lignin
    • 10.10.3. Third-generation (3-G)
      • 10.10.3.1. Algal biofuels
        • 10.10.3.1.1. Properties
        • 10.10.3.1.2. Advantages
    • 10.10.4. Fourth-generation (4-G)
    • 10.10.5. Advantages and disadvantages, by generation
    • 10.10.6. Energy crops
      • 10.10.6.1. Feedstocks
      • 10.10.6.2. SWOT analysis
    • 10.10.7. Agricultural residues
      • 10.10.7.1. Feedstocks
      • 10.10.7.2. SWOT analysis
    • 10.10.8. Manure, sewage sludge and organic waste
      • 10.10.8.1. Processing pathways
      • 10.10.8.2. SWOT analysis
    • 10.10.9. Forestry and wood waste
      • 10.10.9.1. Feedstocks
      • 10.10.9.2. SWOT analysis
    • 10.10.10. Feedstock costs
  • 10.11. Hydrocarbon biofuels
    • 10.11.1. Biodiesel
      • 10.11.1.1. Biodiesel by generation
      • 10.11.1.2. SWOT analysis
      • 10.11.1.3. Production of biodiesel and other biofuels
        • 10.11.1.3.1. Pyrolysis of biomass
        • 10.11.1.3.2. Vegetable oil transesterification
        • 10.11.1.3.3. Vegetable oil hydrogenation (HVO)
          • 10.11.1.3.3.1. Production process
        • 10.11.1.3.4. Biodiesel from tall oil
        • 10.11.1.3.5. Fischer-Tropsch BioDiesel
        • 10.11.1.3.6. Hydrothermal liquefaction of biomass
        • 10.11.1.3.7. CO2 capture and Fischer-Tropsch (FT)
        • 10.11.1.3.8. Dymethyl ether (DME)
      • 10.11.1.4. Prices
      • 10.11.1.5. Global production and consumption
    • 10.11.2. Renewable diesel
      • 10.11.2.1. Production
      • 10.11.2.2. SWOT analysis
      • 10.11.2.3. Global consumption
      • 10.11.2.4. Prices
    • 10.11.3. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
      • 10.11.3.1. Description
      • 10.11.3.2. SWOT analysis
      • 10.11.3.3. Global production and consumption
      • 10.11.3.4. Production pathways
      • 10.11.3.5. Prices
      • 10.11.3.6. Bio-aviation fuel production capacities
      • 10.11.3.7. Market challenges
      • 10.11.3.8. Global consumption
    • 10.11.4. Bio-naphtha
      • 10.11.4.1. Overview
      • 10.11.4.2. SWOT analysis
      • 10.11.4.3. Markets and applications
      • 10.11.4.4. Prices
      • 10.11.4.5. Production capacities, by producer, current and planned
      • 10.11.4.6. Production capacities, total (tonnes), historical, current and planned
  • 10.12. Alcohol fuels
    • 10.12.1. Biomethanol
      • 10.12.1.1. SWOT analysis
      • 10.12.1.2. Methanol-to gasoline technology
        • 10.12.1.2.1. Production processes
          • 10.12.1.2.1.1. Anaerobic digestion
          • 10.12.1.2.1.2. Biomass gasification
          • 10.12.1.2.1.3. Power to Methane
    • 10.12.2. Ethanol
      • 10.12.2.1. Technology description
      • 10.12.2.2. 1G Bio-Ethanol
      • 10.12.2.3. SWOT analysis
      • 10.12.2.4. Ethanol to jet fuel technology
      • 10.12.2.5. Methanol from pulp & paper production
      • 10.12.2.6. Sulfite spent liquor fermentation
      • 10.12.2.7. Gasification
        • 10.12.2.7.1. Biomass gasification and syngas fermentation
        • 10.12.2.7.2. Biomass gasification and syngas thermochemical conversion
      • 10.12.2.8. CO2 capture and alcohol synthesis
      • 10.12.2.9. Biomass hydrolysis and fermentation
        • 10.12.2.9.1. Separate hydrolysis and fermentation
        • 10.12.2.9.2. Simultaneous saccharification and fermentation (SSF)
        • 10.12.2.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
        • 10.12.2.9.4. Simultaneous saccharification and co-fermentation (SSCF)
        • 10.12.2.9.5. Direct conversion (consolidated bioprocessing) (CBP)
      • 10.12.2.10. Global ethanol consumption
    • 10.12.3. Biobutanol
      • 10.12.3.1. Production
      • 10.12.3.2. Prices
  • 10.13. Biomass-based Gas
    • 10.13.1. Feedstocks
      • 10.13.1.1. Biomethane
      • 10.13.1.2. Production pathways
        • 10.13.1.2.1. Landfill gas recovery
        • 10.13.1.2.2. Anaerobic digestion
        • 10.13.1.2.3. Thermal gasification
      • 10.13.1.3. SWOT analysis
      • 10.13.1.4. Global production
      • 10.13.1.5. Prices
        • 10.13.1.5.1. Raw Biogas
        • 10.13.1.5.2. Upgraded Biomethane
      • 10.13.1.6. Bio-LNG
        • 10.13.1.6.1. Markets
          • 10.13.1.6.1.1. Trucks
          • 10.13.1.6.1.2. Marine
        • 10.13.1.6.2. Production
        • 10.13.1.6.3. Plants
      • 10.13.1.7. bio-CNG (compressed natural gas derived from biogas)
      • 10.13.1.8. Carbon capture from biogas
    • 10.13.2. Biosyngas
      • 10.13.2.1. Production
      • 10.13.2.2. Prices
    • 10.13.3. Biohydrogen
      • 10.13.3.1. Description
      • 10.13.3.2. SWOT analysis
      • 10.13.3.3. Production of biohydrogen from biomass
        • 10.13.3.3.1. Biological Conversion Routes
          • 10.13.3.3.1.1. Bio-photochemical Reaction
          • 10.13.3.3.1.2. Fermentation and Anaerobic Digestion
        • 10.13.3.3.2. Thermochemical conversion routes
          • 10.13.3.3.2.1. Biomass Gasification
          • 10.13.3.3.2.2. Biomass Pyrolysis
          • 10.13.3.3.2.3. Biomethane Reforming
      • 10.13.3.4. Applications
      • 10.13.3.5. Prices
    • 10.13.4. Biochar in biogas production
    • 10.13.5. Bio-DME
  • 10.14. Chemical recycling for biofuels
    • 10.14.1. Plastic pyrolysis
    • 10.14.2. Used tires pyrolysis
      • 10.14.2.1. Conversion to biofuel
    • 10.14.3. Co-pyrolysis of biomass and plastic wastes
    • 10.14.4. Gasification
      • 10.14.4.1. Syngas conversion to methanol
      • 10.14.4.2. Biomass gasification and syngas fermentation
      • 10.14.4.3. Biomass gasification and syngas thermochemical conversion
    • 10.14.5. Hydrothermal cracking
    • 10.14.6. SWOT analysis
  • 10.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
    • 10.15.1. Introduction
    • 10.15.2. Benefits of e-fuels
    • 10.15.3. Feedstocks
      • 10.15.3.1. Hydrogen electrolysis
      • 10.15.3.2. CO2 capture
    • 10.15.4. SWOT analysis
    • 10.15.5. Production
      • 10.15.5.1. eFuel production facilities, current and planned
    • 10.15.6. Electrolysers
      • 10.15.6.1. Commercial alkaline electrolyser cells (AECs)
      • 10.15.6.2. PEM electrolysers (PEMEC)
      • 10.15.6.3. High-temperature solid oxide electrolyser cells (SOECs)
    • 10.15.7. Prices
    • 10.15.8. Market challenges
    • 10.15.9. Companies
  • 10.16. Algae-derived biofuels
    • 10.16.1. Technology description
    • 10.16.2. Conversion pathways
    • 10.16.3. SWOT analysis
    • 10.16.4. Production
    • 10.16.5. Market challenges
    • 10.16.6. Prices
    • 10.16.7. Producers
  • 10.17. Green Ammonia
    • 10.17.1. Production
      • 10.17.1.1. Decarbonisation of ammonia production
      • 10.17.1.2. Green ammonia projects
    • 10.17.2. Green ammonia synthesis methods
      • 10.17.2.1. Haber-Bosch process
      • 10.17.2.2. Biological nitrogen fixation
      • 10.17.2.3. Electrochemical production
      • 10.17.2.4. Chemical looping processes
    • 10.17.3. SWOT analysis
    • 10.17.4. Blue ammonia
      • 10.17.4.1. Blue ammonia projects
    • 10.17.5. Markets and applications
      • 10.17.5.1. Chemical energy storage
        • 10.17.5.1.1. Ammonia fuel cells
      • 10.17.5.2. Marine fuel
    • 10.17.6. Prices
    • 10.17.7. Estimated market demand
    • 10.17.8. Companies and projects
  • 10.18. Biofuels from carbon capture
    • 10.18.1. Overview
    • 10.18.2. CO2 capture from point sources
    • 10.18.3. Production routes
    • 10.18.4. SWOT analysis
    • 10.18.5. Direct air capture (DAC)
      • 10.18.5.1. Description
      • 10.18.5.2. Deployment
      • 10.18.5.3. Point source carbon capture versus Direct Air Capture
      • 10.18.5.4. Technologies
        • 10.18.5.4.1. Solid sorbents
        • 10.18.5.4.2. Liquid sorbents
        • 10.18.5.4.3. Liquid solvents
        • 10.18.5.4.4. Airflow equipment integration
        • 10.18.5.4.5. Passive Direct Air Capture (PDAC)
        • 10.18.5.4.6. Direct conversion
        • 10.18.5.4.7. Co-product generation
        • 10.18.5.4.8. Low Temperature DAC
        • 10.18.5.4.9. Regeneration methods
      • 10.18.5.5. Commercialization and plants
      • 10.18.5.6. Metal-organic frameworks (MOFs) in DAC
      • 10.18.5.7. DAC plants and projects-current and planned
      • 10.18.5.8. Markets for DAC
      • 10.18.5.9. Costs
      • 10.18.5.10. Challenges
      • 10.18.5.11. Players and production
    • 10.18.6. Carbon utilization for biofuels
      • 10.18.6.1. Production routes
        • 10.18.6.1.1. Electrolyzers
        • 10.18.6.1.2. Low-carbon hydrogen
      • 10.18.6.2. Products & applications
        • 10.18.6.2.1. Vehicles
        • 10.18.6.2.2. Shipping
        • 10.18.6.2.3. Aviation
        • 10.18.6.2.4. Costs
        • 10.18.6.2.5. Ethanol
        • 10.18.6.2.6. Methanol
        • 10.18.6.2.7. Sustainable Aviation Fuel
        • 10.18.6.2.8. Methane
        • 10.18.6.2.9. Algae based biofuels
        • 10.18.6.2.10. CO2-fuels from solar
      • 10.18.6.3. Challenges
      • 10.18.6.4. SWOT analysis
      • 10.18.6.5. Companies
  • 10.19. Bio-oils (pyrolysis oils)
    • 10.19.1. Description
      • 10.19.1.1. Advantages of bio-oils
    • 10.19.2. Production
      • 10.19.2.1. Fast Pyrolysis
      • 10.19.2.2. Costs of production
      • 10.19.2.3. Upgrading
    • 10.19.3. SWOT analysis
    • 10.19.4. Applications
    • 10.19.5. Bio-oil producers
    • 10.19.6. Prices
  • 10.20. Refuse Derived Fuels (RDF)
    • 10.20.1. Overview
    • 10.20.2. Production
      • 10.20.2.1. Production process
      • 10.20.2.2. Mechanical biological treatment
    • 10.20.3. Markets
  • 10.21. Company profiles (214 company profiles)

11. SUSTAINABLE ELECTRONICS

  • 11.1. Overview
    • 11.1.1. Green electronics manufacturing
    • 11.1.2. Drivers for sustainable electronics
    • 11.1.3. Environmental Impacts of Electronics Manufacturing
      • 11.1.3.1. E-Waste Generation
      • 11.1.3.2. Carbon Emissions
      • 11.1.3.3. Resource Utilization
      • 11.1.3.4. Waste Minimization
      • 11.1.3.5. Supply Chain Impacts
    • 11.1.4. New opportunities from sustainable electronics
    • 11.1.5. Regulations
      • 11.1.5.1. Certifications
    • 11.1.6. Powering sustainable electronics (Bio-based batteries)
    • 11.1.7. Bioplastics in injection moulded electronics parts
  • 11.2. Green electronics manufacturing
    • 11.2.1. Conventional electronics manufacturing
    • 11.2.2. Benefits of Green Electronics manufacturing
    • 11.2.3. Challenges in adopting Green Electronics manufacturing
    • 11.2.4. Approaches
      • 11.2.4.1. Closed-Loop Manufacturing
      • 11.2.4.2. Digital Manufacturing
        • 11.2.4.2.1. Advanced robotics & automation
        • 11.2.4.2.2. AI & machine learning analytics
        • 11.2.4.2.3. Internet of Things (IoT)
        • 11.2.4.2.4. Additive manufacturing
        • 11.2.4.2.5. Virtual prototyping
        • 11.2.4.2.6. Blockchain-enabled supply chain traceability
      • 11.2.4.3. Renewable Energy Usage
      • 11.2.4.4. Energy Efficiency
      • 11.2.4.5. Materials Efficiency
      • 11.2.4.6. Sustainable Chemistry
      • 11.2.4.7. Recycled Materials
        • 11.2.4.7.1. Advanced chemical recycling
      • 11.2.4.8. Bio-Based Materials
    • 11.2.5. Greening the Supply Chain
      • 11.2.5.1. Key focus areas
      • 11.2.5.2. Sustainability activities from major electronics brands
      • 11.2.5.3. Key challenges
      • 11.2.5.4. Use of digital technologies
    • 11.2.6. Sustainable Printed Circuit Board (PCB) manufacturing
      • 11.2.6.1. Conventional PCB manufacturing
      • 11.2.6.2. Trends in PCBs
        • 11.2.6.2.1. High-Speed PCBs
        • 11.2.6.2.2. Flexible PCBs
        • 11.2.6.2.3. 3D Printed PCBs
        • 11.2.6.2.4. Sustainable PCBs
      • 11.2.6.3. Reconciling sustainability with performance
      • 11.2.6.4. Sustainable supply chains
      • 11.2.6.5. Sustainability in PCB manufacturing
        • 11.2.6.5.1. Sustainable cleaning of PCBs
      • 11.2.6.6. Design of PCBs for sustainability
        • 11.2.6.6.1. Rigid
        • 11.2.6.6.2. Flexible
        • 11.2.6.6.3. Additive manufacturing
        • 11.2.6.6.4. In-mold elctronics (IME)
      • 11.2.6.7. Materials
        • 11.2.6.7.1. Metal cores
        • 11.2.6.7.2. Recycled laminates
        • 11.2.6.7.3. Conductive inks
        • 11.2.6.7.4. Green and lead-free solder
        • 11.2.6.7.5. Biodegradable substrates
          • 11.2.6.7.5.1. Bacterial Cellulose
          • 11.2.6.7.5.2. Mycelium
          • 11.2.6.7.5.3. Lignin
          • 11.2.6.7.5.4. Cellulose Nanofibers
          • 11.2.6.7.5.5. Soy Protein
          • 11.2.6.7.5.6. Algae
          • 11.2.6.7.5.7. PHAs
        • 11.2.6.7.6. Biobased inks
      • 11.2.6.8. Substrates
        • 11.2.6.8.1. Halogen-free FR4
          • 11.2.6.8.1.1. FR4 limitations
          • 11.2.6.8.1.2. FR4 alternatives
          • 11.2.6.8.1.3. Bio-Polyimide
        • 11.2.6.8.2. Metal-core PCBs
        • 11.2.6.8.3. Biobased PCBs
          • 11.2.6.8.3.1. Flexible (bio) polyimide PCBs
          • 11.2.6.8.3.2. Recent commercial activity
        • 11.2.6.8.4. Paper-based PCBs
        • 11.2.6.8.5. PCBs without solder mask
        • 11.2.6.8.6. Thinner dielectrics
        • 11.2.6.8.7. Recycled plastic substrates
        • 11.2.6.8.8. Flexible substrates
      • 11.2.6.9. Sustainable patterning and metallization in electronics manufacturing
        • 11.2.6.9.1. Introduction
        • 11.2.6.9.2. Issues with sustainability
        • 11.2.6.9.3. Regeneration and reuse of etching chemicals
        • 11.2.6.9.4. Transition from Wet to Dry phase patterning
        • 11.2.6.9.5. Print-and-plate
        • 11.2.6.9.6. Approaches
          • 11.2.6.9.6.1. Direct Printed Electronics
          • 11.2.6.9.6.2. Photonic Sintering
          • 11.2.6.9.6.3. Biometallization
          • 11.2.6.9.6.4. Plating Resist Alternatives
          • 11.2.6.9.6.5. Laser-Induced Forward Transfer
          • 11.2.6.9.6.6. Electrohydrodynamic Printing
          • 11.2.6.9.6.7. Electrically conductive adhesives (ECAs
          • 11.2.6.9.6.8. Green electroless plating
          • 11.2.6.9.6.9. Smart Masking
          • 11.2.6.9.6.10. Component Integration
          • 11.2.6.9.6.11. Bio-inspired material deposition
          • 11.2.6.9.6.12. Multi-material jetting
          • 11.2.6.9.6.13. Vacuumless deposition
          • 11.2.6.9.6.14. Upcycling waste streams
      • 11.2.6.10. Sustainable attachment and integration of components
        • 11.2.6.10.1. Conventional component attachment materials
        • 11.2.6.10.2. Materials
          • 11.2.6.10.2.1. Conductive adhesives
          • 11.2.6.10.2.2. Biodegradable adhesives
          • 11.2.6.10.2.3. Magnets
          • 11.2.6.10.2.4. Bio-based solders
          • 11.2.6.10.2.5. Bio-derived solders
          • 11.2.6.10.2.6. Recycled plastics
          • 11.2.6.10.2.7. Nano adhesives
          • 11.2.6.10.2.8. Shape memory polymers
          • 11.2.6.10.2.9. Photo-reversible polymers
          • 11.2.6.10.2.10. Conductive biopolymers
        • 11.2.6.10.3. Processes
          • 11.2.6.10.3.1. Traditional thermal processing methods
          • 11.2.6.10.3.2. Low temperature solder
          • 11.2.6.10.3.3. Reflow soldering
          • 11.2.6.10.3.4. Induction soldering
          • 11.2.6.10.3.5. UV curing
          • 11.2.6.10.3.6. Near-infrared (NIR) radiation curing
          • 11.2.6.10.3.7. Photonic sintering/curing
          • 11.2.6.10.3.8. Hybrid integration
    • 11.2.7. Sustainable integrated circuits
      • 11.2.7.1. IC manufacturing
      • 11.2.7.2. Sustainable IC manufacturing
      • 11.2.7.3. Wafer production
        • 11.2.7.3.1. Silicon
        • 11.2.7.3.2. Gallium nitride ICs
        • 11.2.7.3.3. Flexible ICs
        • 11.2.7.3.4. Fully printed organic ICs
      • 11.2.7.4. Oxidation methods
        • 11.2.7.4.1. Sustainable oxidation
        • 11.2.7.4.2. Metal oxides
        • 11.2.7.4.3. Recycling
        • 11.2.7.4.4. Thin gate oxide layers
      • 11.2.7.5. Patterning and doping
        • 11.2.7.5.1. Processes
          • 11.2.7.5.1.1. Wet etching
          • 11.2.7.5.1.2. Dry plasma etching
          • 11.2.7.5.1.3. Lift-off patterning
          • 11.2.7.5.1.4. Surface doping
      • 11.2.7.6. Metallization
        • 11.2.7.6.1. Evaporation
        • 11.2.7.6.2. Plating
        • 11.2.7.6.3. Printing
          • 11.2.7.6.3.1. Printed metal gates for organic thin film transistors
        • 11.2.7.6.4. Physical vapour deposition (PVD)
    • 11.2.8. End of life
      • 11.2.8.1. Hazardous waste
      • 11.2.8.2. Emissions
      • 11.2.8.3. Water Usage
      • 11.2.8.4. Recycling
        • 11.2.8.4.1. Mechanical recycling
        • 11.2.8.4.2. Electro-Mechanical Separation
        • 11.2.8.4.3. Chemical Recycling
      • 11.2.8.5. Electrochemical Processes
        • 11.2.8.5.1. Thermal Recycling
      • 11.2.8.6. Green Certification
  • 11.3. Global market
    • 11.3.1. Global PCB manufacturing industry
      • 11.3.1.1. PCB revenues
    • 11.3.2. Sustainable PCBs
    • 11.3.3. Sustainable ICs
  • 11.4. Company profiles (45 company profiles)

12. BIOBASED ADHESIVES AND SEALANTS

  • 12.1. Overview
    • 12.1.1. Biobased Epoxy Adhesives
    • 12.1.2. Bioobased Polyurethane Adhesives
    • 12.1.3. Other Biobased Adhesives and Sealants
  • 12.2. Types
    • 12.2.1. Cellulose-Based
    • 12.2.2. Starch-Based
    • 12.2.3. Lignin-Based
    • 12.2.4. Vegetable Oils
    • 12.2.5. Protein-Based
    • 12.2.6. Tannin-Based
    • 12.2.7. Algae-based
    • 12.2.8. Chitosan-based
    • 12.2.9. Natural Rubber-based
    • 12.2.10. Silkworm Silk-based
    • 12.2.11. Mussel Protein-based
    • 12.2.12. Soy-based Foam
  • 12.3. Global revenues
    • 12.3.1. By types
    • 12.3.2. By market
  • 12.4. Company profiles (22 company profiles)

13. REFERENCES

List of Tables

  • Table 1. Plant-based feedstocks and biochemicals produced
  • Table 2. Waste-based feedstocks and biochemicals produced
  • Table 3. Microbial and mineral-based feedstocks and biochemicals produced
  • Table 4. Common starch sources that can be used as feedstocks for producing biochemicals
  • Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals
  • Table 6. Applications of lysine as a feedstock for biochemicals
  • Table 7. HDMA sources that can be used as feedstocks for producing biochemicals
  • Table 8. Applications of bio-based HDMA
  • Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5)
  • Table 10. Applications of DN5
  • Table 11. Biobased feedstocks for isosorbide
  • Table 12. Applications of bio-based isosorbide
  • Table 13. Lactide applications
  • Table 14. Biobased feedstock sources for itaconic acid
  • Table 15. Applications of bio-based itaconic acid
  • Table 16. Biobased feedstock sources for 3-HP
  • Table 17. Applications of 3-HP
  • Table 18. Applications of bio-based acrylic acid
  • Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO)
  • Table 20. Biobased feedstock sources for Succinic acid
  • Table 21. Applications of succinic acid
  • Table 22. Applications of bio-based 1,4-Butanediol (BDO)
  • Table 23. Applications of bio-based Tetrahydrofuran (THF)
  • Table 24. Applications of bio-based adipic acid
  • Table 25. Applications of bio-based caprolactam
  • Table 26. Biobased feedstock sources for isobutanol
  • Table 27. Applications of bio-based isobutanol
  • Table 28. Biobased feedstock sources for p-Xylene
  • Table 29. Applications of bio-based p-Xylene
  • Table 30. Applications of bio-based Terephthalic acid (TPA)
  • Table 31. Biobased feedstock sources for 1,3 Proppanediol
  • Table 32. Applications of bio-based 1,3 Proppanediol
  • Table 33. Biobased feedstock sources for MEG
  • Table 34. Applications of bio-based MEG
  • Table 35. Biobased MEG producers capacities
  • Table 36. Biobased feedstock sources for ethanol
  • Table 37. Applications of bio-based ethanol
  • Table 38. Applications of bio-based ethylene
  • Table 39. Applications of bio-based propylene
  • Table 40. Applications of bio-based vinyl chloride
  • Table 41. Applications of bio-based Methly methacrylate
  • Table 42. Applications of bio-based aniline
  • Table 43. Applications of biobased fructose
  • Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF)
  • Table 45. Applications of 5-(Chloromethyl)furfural (CMF)
  • Table 46. Applications of Levulinic acid
  • Table 47. Markets and applications for bio-based FDME
  • Table 48. Applications of FDCA
  • Table 49. Markets and applications for bio-based levoglucosenone
  • Table 50. Biochemicals derived from hemicellulose
  • Table 51. Markets and applications for bio-based hemicellulose
  • Table 52. Markets and applications for bio-based furfuryl alcohol
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 54. Lignin aromatic compound products
  • Table 55. Prices of benzene, toluene, xylene and their derivatives
  • Table 56. Lignin products in polymeric materials
  • Table 57. Application of lignin in plastics and composites
  • Table 58. Markets and applications for bio-based glycerol
  • Table 59. Markets and applications for Bio-based MPG
  • Table 60. Markets and applications: Bio-based ECH
  • Table 61. Mineral source products and applications
  • Table 62. Type of biodegradation
  • Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics
  • Table 64. Types of Bio-based and/or Biodegradable Plastics, applications
  • Table 65. Key market players by Bio-based and/or Biodegradable Plastic types
  • Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
  • Table 67. Lactic acid producers and production capacities
  • Table 68. PLA producers and production capacities
  • Table 69. Planned PLA capacity expansions in China
  • Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
  • Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
  • Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
  • Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
  • Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
  • Table 75. PEF vs. PET
  • Table 76. FDCA and PEF producers
  • Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
  • Table 78. Leading Bio-PA producers production capacities
  • Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
  • Table 80. Leading PBAT producers, production capacities and brands
  • Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
  • Table 82. Leading PBS producers and production capacities
  • Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
  • Table 84. Leading Bio-PE producers
  • Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
  • Table 86. Leading Bio-PP producers and capacities
  • Table 87.Types of PHAs and properties
  • Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
  • Table 89. Polyhydroxyalkanoate (PHA) extraction methods
  • Table 90. Polyhydroxyalkanoates (PHA) market analysis
  • Table 91. Commercially available PHAs
  • Table 92. Markets and applications for PHAs
  • Table 93. Applications, advantages and disadvantages of PHAs in packaging
  • Table 94. Polyhydroxyalkanoates (PHA) producers
  • Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications
  • Table 96. Leading MFC producers and capacities
  • Table 97. Synthesis methods for cellulose nanocrystals (CNC)
  • Table 98. CNC sources, size and yield
  • Table 99. CNC properties
  • Table 100. Mechanical properties of CNC and other reinforcement materials
  • Table 101. Applications of nanocrystalline cellulose (NCC)
  • Table 102. Cellulose nanocrystals analysis
  • Table 103: Cellulose nanocrystal production capacities and production process, by producer
  • Table 104. Applications of cellulose nanofibers (CNF)
  • Table 105. Cellulose nanofibers market analysis
  • Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes
  • Table 107. Applications of bacterial nanocellulose (BNC)
  • Table 108. Types of protein based-bioplastics, applications and companies
  • Table 109. Types of algal and fungal based-bioplastics, applications and companies
  • Table 110. Overview of alginate-description, properties, application and market size
  • Table 111. Companies developing algal-based bioplastics
  • Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 113. Companies developing mycelium-based bioplastics
  • Table 114. Overview of chitosan-description, properties, drawbacks and applications
  • Table 115. Global production capacities of biobased and sustainable plastics in 2019-2035, by region, 1,000 tonnes
  • Table 116. Biobased and sustainable plastics producers in North America
  • Table 117. Biobased and sustainable plastics producers in Europe
  • Table 118. Biobased and sustainable plastics producers in Asia-Pacific
  • Table 119. Biobased and sustainable plastics producers in Latin America
  • Table 120. Processes for bioplastics in packaging
  • Table 121. Comparison of bioplastics' (PLA and PHAs) properties to other common polymers used in product packaging
  • Table 122. Typical applications for bioplastics in flexible packaging
  • Table 123. Typical applications for bioplastics in rigid packaging
  • Table 124. Technical lignin types and applications
  • Table 125. Classification of technical lignins
  • Table 126. Lignin content of selected biomass
  • Table 127. Properties of lignins and their applications
  • Table 128. Example markets and applications for lignin
  • Table 129. Processes for lignin production
  • Table 130. Biorefinery feedstocks
  • Table 131. Comparison of pulping and biorefinery lignins
  • Table 132. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 133. Market drivers and trends for lignin
  • Table 134. Production capacities of technical lignin producers
  • Table 135. Production capacities of biorefinery lignin producers
  • Table 136. Estimated consumption of lignin, 2019-2035 (000 MT)
  • Table 137. Prices of benzene, toluene, xylene and their derivatives
  • Table 138. Application of lignin in plastics and polymers
  • Table 139. Lactips plastic pellets
  • Table 140. Oji Holdings CNF products
  • Table 141. Types of natural fibers
  • Table 142. Markets and applications for natural fibers
  • Table 143. Commercially available natural fiber products
  • Table 144. Market drivers for natural fibers
  • Table 145. Typical properties of natural fibers
  • Table 146. Overview of kapok fibers-description, properties, drawbacks and applications
  • Table 147. Overview of luffa fibers-description, properties, drawbacks and applications
  • Table 148. Overview of jute fibers-description, properties, drawbacks and applications
  • Table 149. Overview of hemp fibers-description, properties, drawbacks and applications
  • Table 150. Overview of flax fibers-description, properties, drawbacks and applications
  • Table 151. Overview of ramie fibers-description, properties, drawbacks and applications
  • Table 152. Overview of kenaf fibers-description, properties, drawbacks and applications
  • Table 153. Overview of sisal fibers-description, properties, drawbacks and applications
  • Table 154. Overview of abaca fibers-description, properties, drawbacks and applications
  • Table 155. Overview of coir fibers-description, properties, drawbacks and applications
  • Table 156. Overview of banana fibers-description, properties, drawbacks and applications
  • Table 157. Overview of pineapple fibers-description, properties, drawbacks and applications
  • Table 158. Overview of rice fibers-description, properties, drawbacks and applications
  • Table 159. Overview of corn fibers-description, properties, drawbacks and applications
  • Table 160. Overview of switch grass fibers-description, properties and applications
  • Table 161. Overview of sugarcane fibers-description, properties, drawbacks and application and market size
  • Table 162. Overview of bamboo fibers-description, properties, drawbacks and applications
  • Table 163. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 164. Overview of chitosan fibers-description, properties, drawbacks and applications
  • Table 165. Overview of alginate-description, properties, application and market size
  • Table 166. Overview of silk fibers-description, properties, application and market size
  • Table 167. Next-gen silk producers
  • Table 168. Companies developing cellulose fibers for application in plastic composites
  • Table 169. Microfibrillated cellulose (MFC) market analysis
  • Table 170. Leading MFC producers and capacities
  • Table 171. Cellulose nanocrystals market overview
  • Table 172. Cellulose nanocrystal production capacities and production process, by producer
  • Table 173. Cellulose nanofibers market analysis
  • Table 174. CNF production capacities and production process, by producer, in metric tons
  • Table 175. Processing and treatment methods for natural fibers used in plastic composites
  • Table 176. Application, manufacturing method, and matrix materials of natural fibers
  • Table 177. Properties of natural fiber-bio-based polymer compounds
  • Table 178. Typical properties of short natural fiber-thermoplastic composites
  • Table 179. Properties of non-woven natural fiber mat composites
  • Table 180. Applications of natural fibers in plastics
  • Table 181. Applications of natural fibers in the automotive industry
  • Table 182. Natural fiber-reinforced polymer composite in the automotive market
  • Table 183. Applications of natural fibers in packaging
  • Table 184. Applications of natural fibers in construction
  • Table 185. Applications of natural fibers in the appliances market
  • Table 186. Applications of natural fibers in the consumer electronics market
  • Table 187. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD)
  • Table 188. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD)
  • Table 189. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD)
  • Table 190. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD)
  • Table 191. Granbio Nanocellulose Processes
  • Table 192. Oji Holdings CNF products
  • Table 193. Global trends and drivers in sustainable construction materials
  • Table 194. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD)
  • Table 195. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD)
  • Table 196. Established bio-based construction materials
  • Table 197. Types of self-healing concrete
  • Table 198. General properties and value of aerogels
  • Table 199. Key properties of silica aerogels
  • Table 200. Chemical precursors used to synthesize silica aerogels
  • Table 201. Commercially available aerogel-enhanced blankets
  • Table 202. Main manufacturers of silica aerogels and product offerings
  • Table 203. Typical structural properties of metal oxide aerogels
  • Table 204. Polymer aerogels companies
  • Table 205. Types of biobased aerogels
  • Table 206. Carbon aerogel companies
  • Table 207. Conversion pathway for CO2-derived building materials
  • Table 208. Carbon capture technologies and projects in the cement sector
  • Table 209. Carbonation of recycled concrete companies
  • Table 210. Current and projected costs for some key CO2 utilization applications in the construction industry
  • Table 211. Market challenges for CO2 utilization in construction materials
  • Table 212. Global Decarbonization Targets and Policies related to Green Steel
  • Table 213. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM)
  • Table 214. Hydrogen-based steelmaking technologies
  • Table 215. Comparison of green steel production technologies
  • Table 216. Advantages and disadvantages of each potential hydrogen carrier
  • Table 217. CCUS in green steel production
  • Table 218. Biochar in steel and metal
  • Table 219. Hydrogen blast furnace schematic
  • Table 220. Applications of microwave processing in green steelmaking
  • Table 221. Applications of additive manufacturing (AM) in steelmaking
  • Table 222. Technology readiness level (TRL) for key green steel production technologies
  • Table 223. Properties of Green steels
  • Table 224. Applications of green steel in the construction industry
  • Table 225. Market trends in bio-based and sustainable packaging
  • Table 226. Drivers for recent growth in the bioplastics and biopolymers markets
  • Table 227. Challenges for bio-based and sustainable packaging
  • Table 228. Types of bio-based plastics and fossil-fuel-based plastics
  • Table 229. Comparison of synthetic fossil-based and bio-based polymers
  • Table 230. Processes for bioplastics in packaging
  • Table 231. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications
  • Table 232. Lactic acid producers and production capacities
  • Table 233. PLA producers and production capacities
  • Table 234. Planned PLA capacity expansions in China
  • Table 235. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications
  • Table 236. Bio-based Polyethylene terephthalate (PET) producers and production capacities,
  • Table 237. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications
  • Table 238. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers
  • Table 239. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
  • Table 240. PEF vs. PET
  • Table 241. FDCA and PEF producers
  • Table 242. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications
  • Table 243. Leading Bio-PA producers production capacities
  • Table 244. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications
  • Table 245. Leading PBAT producers, production capacities and brands
  • Table 246. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications
  • Table 247. Leading PBS producers and production capacities
  • Table 248. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications
  • Table 249. PEF vs. PET
  • Table 250. FDCA and PEF producers
  • Table 251. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications
  • Table 252. Leading Bio-PE producers
  • Table 253. Bio-PP market analysis- manufacture, advantages, disadvantages and applications
  • Table 254. Leading Bio-PP producers and capacities
  • Table 255.Types of PHAs and properties
  • Table 256. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers
  • Table 257. Polyhydroxyalkanoate (PHA) extraction methods
  • Table 258. Polyhydroxyalkanoates (PHA) market analysis
  • Table 259. Commercially available PHAs
  • Table 260. Markets and applications for PHAs
  • Table 261. Applications, advantages and disadvantages of PHAs in packaging
  • Table 262. Length and diameter of nanocellulose and MFC
  • Table 263. Major polymers found in the extracellular covering of different algae
  • Table 264. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers
  • Table 265. Applications of nanocrystalline cellulose (NCC)
  • Table 266. Market overview for cellulose nanofibers in packaging
  • Table 267. Types of protein based-bioplastics, applications and companies
  • Table 268. Overview of alginate-description, properties, application and market size
  • Table 269. Companies developing algal-based bioplastics
  • Table 270. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 271. Overview of chitosan-description, properties, drawbacks and applications
  • Table 272. Bio-based naphtha markets and applications
  • Table 273. Bio-naphtha market value chain
  • Table 274. Pros and cons of different type of food packaging materials
  • Table 275. Active Biodegradable Films films and their food applications
  • Table 276. Intelligent Biodegradable Films
  • Table 277. Edible films and coatings market summary
  • Table 278. Summary of barrier films and coatings for packaging
  • Table 279. Types of polyols
  • Table 280. Polyol producers
  • Table 281. Bio-based polyurethane coating products
  • Table 282. Bio-based acrylate resin products
  • Table 283. Polylactic acid (PLA) market analysis
  • Table 284. Commercially available PHAs
  • Table 285. Market overview for cellulose nanofibers in paints and coatings
  • Table 286. Companies developing cellulose nanofibers products in paints and coatings
  • Table 287. Types of protein based-biomaterials, applications and companies
  • Table 288. CO2 utilization and removal pathways
  • Table 289. CO2 utilization products developed by chemical and plastic producers
  • Table 290. Comparison of bioplastics' (PLA and PHAs) properties to other common polymers used in product packaging
  • Table 291. Typical applications for bioplastics in flexible packaging
  • Table 292. Typical applications for bioplastics in rigid packaging
  • Table 293. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate
  • Table 294. Lactips plastic pellets
  • Table 295. Oji Holdings CNF products
  • Table 296. Properties and applications of the main natural fibres
  • Table 298. Types of sustainable alternative leathers
  • Table 299. Properties of bio-based leathers
  • Table 300. Comparison with conventional leathers
  • Table 301. Price of commercially available sustainable alternative leather products
  • Table 302. Comparative analysis of sustainable alternative leathers
  • Table 303. Key processing steps involved in transforming plant fibers into leather materials
  • Table 304. Current and emerging plant-based leather products
  • Table 305. Companies developing plant-based leather products
  • Table 306. Overview of mycelium-description, properties, drawbacks and applications
  • Table 307. Companies developing mycelium-based leather products
  • Table 308. Types of microbial-derived leather alternative
  • Table 309. Companies developing microbial leather products
  • Table 310. Companies developing plant-based leather products
  • Table 311. Types of protein-based leather alternatives
  • Table 312. Companies developing protein based leather
  • Table 313. Companies developing sustainable coatings and dyes for leather -
  • Table 314. Markets and applications for bio-based textiles and leather
  • Table 315. Applications of biobased leather in furniture and upholstery
  • Table 316. Global revenues for bio-based textiles by type, 2018-2035 (millions USD)
  • Table 317. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD)
  • Table 318. Market drivers and trends in bio-based and sustainable coatings
  • Table 319. Example envinronmentally friendly coatings, advantages and disadvantages
  • Table 320. Plant Waxes
  • Table 321. Types of alkyd resins and properties
  • Table 322. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers
  • Table 323. Bio-based alkyd coating products
  • Table 324. Types of polyols
  • Table 325. Polyol producers
  • Table 326. Bio-based polyurethane coating products
  • Table 327. Market summary for bio-based epoxy resins
  • Table 328. Bio-based polyurethane coating products
  • Table 329. Bio-based acrylate resin products
  • Table 330. Polylactic acid (PLA) market analysis
  • Table 331. PLA producers and production capacities
  • Table 332. Polyhydroxyalkanoates (PHA) market analysis
  • Table 333.Types of PHAs and properties
  • Table 334. Polyhydroxyalkanoates (PHA) producers
  • Table 335. Commercially available PHAs
  • Table 336. Properties of micro/nanocellulose, by type
  • Table 337: Types of nanocellulose
  • Table 338. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons
  • Table 339. Commercially available Microfibrillated Cellulose products
  • Table 340. Market overview for cellulose nanofibers in paints and coatings
  • Table 341. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs
  • Table 342. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization
  • Table 343. CNC properties
  • Table 344: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes
  • Table 345. Applications of bacterial nanocellulose (BNC)
  • Table 346. Edible films and coatings market summary
  • Table 347. Types of protein based-biomaterials, applications and companies
  • Table 348. Overview of algal coatings-description, properties, application and market size
  • Table 349. Companies developing algal-based plastics
  • Table 350. Global market revenues for bio-based coatings, by types, 2018-2035 (billions USD)
  • Table 351. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate
  • Table 352. Lactips plastic pellets
  • Table 353. Oji Holdings CNF products
  • Table 354. Market drivers for biofuels
  • Table 355. Market challenges for biofuels
  • Table 356. Liquid biofuels market 2020-2035, by type and production
  • Table 357. Comparison of biofuels
  • Table 358. Comparison of biofuel costs (USD/liter) 2023, by type
  • Table 359. Categories and examples of solid biofuel
  • Table 360. Comparison of biofuels and e-fuels to fossil and electricity
  • Table 361. Classification of biomass feedstock
  • Table 362. Biorefinery feedstocks
  • Table 363. Feedstock conversion pathways
  • Table 364. First-Generation Feedstocks
  • Table 365. Lignocellulosic ethanol plants and capacities
  • Table 366. Comparison of pulping and biorefinery lignins
  • Table 367. Commercial and pre-commercial biorefinery lignin production facilities and processes
  • Table 368. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol
  • Table 369. Properties of microalgae and macroalgae
  • Table 370. Yield of algae and other biodiesel crops
  • Table 371. Advantages and disadvantages of biofuels, by generation
  • Table 372. Biodiesel by generation
  • Table 373. Biodiesel production techniques
  • Table 374. Summary of pyrolysis technique under different operating conditions
  • Table 375. Biomass materials and their bio-oil yield
  • Table 376. Biofuel production cost from the biomass pyrolysis process
  • Table 377. Properties of vegetable oils in comparison to diesel
  • Table 378. Main producers of HVO and capacities
  • Table 379. Example commercial Development of BtL processes
  • Table 380. Pilot or demo projects for biomass to liquid (BtL) processes
  • Table 381. Global biodiesel consumption, 2010-2035 (M litres/year)
  • Table 382. Global renewable diesel consumption, 2010-2035 (M litres/year)
  • Table 383. Renewable diesel price ranges
  • Table 384. Advantages and disadvantages of Bio-aviation fuel
  • Table 385. Production pathways for Bio-aviation fuel
  • Table 386. Current and announced Bio-aviation fuel facilities and capacities
  • Table 387. Global bio-jet fuel consumption 2019-2035 (Million litres/year)
  • Table 388. Bio-based naphtha markets and applications
  • Table 389. Bio-naphtha market value chain
  • Table 390. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products
  • Table 391. Bio-based Naphtha production capacities, by producer
  • Table 392. Comparison of biogas, biomethane and natural gas
  • Table 393. Processes in bioethanol production
  • Table 394. Microorganisms used in CBP for ethanol production from biomass lignocellulosic
  • Table 395. Ethanol consumption 2010-2035 (million litres)
  • Table 396. Biogas feedstocks
  • Table 397. Existing and planned bio-LNG production plants
  • Table 398. Methods for capturing carbon dioxide from biogas
  • Table 399. Comparison of different Bio-H2 production pathways
  • Table 400. Markets and applications for biohydrogen
  • Table 401. Summary of gasification technologies
  • Table 402. Overview of hydrothermal cracking for advanced chemical recycling
  • Table 403. Applications of e-fuels, by type
  • Table 404. Overview of e-fuels
  • Table 405. Benefits of e-fuels
  • Table 406. eFuel production facilities, current and planned
  • Table 407. Main characteristics of different electrolyzer technologies
  • Table 408. Market challenges for e-fuels
  • Table 409. E-fuels companies
  • Table 410. Algae-derived biofuel producers
  • Table 411. Green ammonia projects (current and planned)
  • Table 412. Blue ammonia projects
  • Table 413. Ammonia fuel cell technologies
  • Table 414. Market overview of green ammonia in marine fuel
  • Table 415. Summary of marine alternative fuels
  • Table 416. Estimated costs for different types of ammonia
  • Table 417. Main players in green ammonia
  • Table 418. Market overview for CO2 derived fuels
  • Table 419. Point source examples
  • Table 420. Advantages and disadvantages of DAC
  • Table 421. Companies developing airflow equipment integration with DAC
  • Table 422. Companies developing Passive Direct Air Capture (PDAC) technologies
  • Table 423. Companies developing regeneration methods for DAC technologies
  • Table 424. DAC companies and technologies
  • Table 425. DAC technology developers and production
  • Table 426. DAC projects in development
  • Table 427. Markets for DAC
  • Table 428. Costs summary for DAC
  • Table 429. Cost estimates of DAC
  • Table 430. Challenges for DAC technology
  • Table 431. DAC companies and technologies
  • Table 432. Market overview for CO2 derived fuels
  • Table 433. Main production routes and processes for manufacturing fuels from captured carbon dioxide
  • Table 434. CO2-derived fuels projects
  • Table 435. Thermochemical methods to produce methanol from CO2
  • Table 436. pilot plants for CO2-to-methanol conversion
  • Table 437. Microalgae products and prices
  • Table 438. Main Solar-Driven CO2 Conversion Approaches
  • Table 439. Market challenges for CO2 derived fuels
  • Table 440. Companies in CO2-derived fuel products
  • Table 441. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils
  • Table 442. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil
  • Table 443. Main techniques used to upgrade bio-oil into higher-quality fuels
  • Table 444. Markets and applications for bio-oil
  • Table 445. Bio-oil producers
  • Table 446. Key resource recovery technologies
  • Table 447. Markets and end uses for refuse-derived fuels (RDF)
  • Table 448. Granbio Nanocellulose Processes
  • Table 449. Key factors driving adoption of green electronics
  • Table 450. Key circular economy strategies for electronics
  • Table 451. Regulations pertaining to green electronics
  • Table 452. Companies developing bio-based batteries for application in sustainable electronics
  • Table 453. Benefits of Green Electronics Manufacturing
  • Table 454. Challenges in adopting Green Electronics manufacturing
  • Table 455. Major chipmakers' renewable energy road maps
  • Table 456. Energy efficiency in sustainable electronics manufacturing
  • Table 457. Composition of plastic waste streams
  • Table 458. Comparison of mechanical and advanced chemical recycling
  • Table 459. Example chemically recycled plastic products
  • Table 460. Bio-based and non-toxic materials in sustainable electronics
  • Table 461. Key focus areas for enabling greener and ethically responsible electronics supply chains
  • Table 462. Sustainability programs and disclosure from major electronics brands
  • Table 463. PCB manufacturing process
  • Table 464. Challenges in PCB manufacturing
  • Table 465. 3D PCB manufacturing
  • Table 466. Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors
  • Table 467. Sustainable PCB supply chain
  • Table 468. Key areas where the PCB industry can improve sustainability
  • Table 469. Improving sustainability of PCB design
  • Table 470. PCB design options for sustainability
  • Table 471. Sustainability benefits and challenges associated with 3D printing
  • Table 472. Conductive ink producers
  • Table 473. Green and lead-free solder companies
  • Table 474. Biodegradable substrates for PCBs
  • Table 475. Overview of mycelium fibers-description, properties, drawbacks and applications
  • Table 476. Application of lignin in composites
  • Table 477. Properties of lignins and their applications
  • Table 478. Properties of flexible electronics-cellulose nanofiber film (nanopaper)
  • Table 479. Companies developing cellulose nanofibers for electronics
  • Table 480. Commercially available PHAs
  • Table 481. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs)
  • Table 482. Halogen-free FR4 companies
  • Table 483. Properties of biobased PCBs
  • Table 484. Applications of flexible (bio) polyimide PCBs
  • Table 485. Main patterning and metallization steps in PCB fabrication and sustainable options
  • Table 486. Sustainability issues with conventional metallization processes
  • Table 487. Benefits of print-and-plate
  • Table 488. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication
  • Table 489. Applications for laser induced forward transfer
  • Table 490. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication
  • Table 491. Approaches for in-situ oxidation prevention
  • Table 492. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing
  • Table 493. Advantages of green electroless plating
  • Table 494. Comparison of component attachment materials
  • Table 495. Comparison between sustainable and conventional component attachment materials for printed circuit boards
  • Table 496. Comparison between the SMAs and SMPs
  • Table 497. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication
  • Table 498. Comparison of curing and reflow processes used for attaching components in electronics assembly
  • Table 499. Low temperature solder alloys
  • Table 500. Thermally sensitive substrate materials
  • Table 501. Limitations of existing IC production
  • Table 502. Strategies for improving sustainability in integrated circuit (IC) manufacturing
  • Table 503. Comparison of oxidation methods and level of sustainability
  • Table 504. Stage of commercialization for oxides
  • Table 505. Alternative doping techniques
  • Table 506. Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers
  • Table 507. Chemical recycling methods for handling electronic waste
  • Table 508. Electrochemical processes for recycling metals from electronic waste
  • Table 509. Thermal recycling processes for electronic waste
  • Table 510. Global PCB revenues 2018-2035 (billions USD), by substrate types
  • Table 511. Global sustainable PCB revenues 2018-2035, by type (millions USD)
  • Table 512. Global sustainable ICs revenues 2018-2035, by type (millions USD)
  • Table 513. Oji Holdings CNF products
  • Table 514. Global market revenues for bio-based adhesives & sealants, by types, 2018-2035 (millions USD)
  • Table 515. Global market revenues for bio-based adhesives & sealants, by market, 2018-2035 (millions USD)

List of Figures

  • Figure 1. Schematic of biorefinery processes
  • Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes)
  • Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes)
  • Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes)
  • Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes
  • Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes)
  • Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes)
  • Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes)
  • Figure 9. Global lactide production, 2018-2035 (metric tonnes)
  • Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes)
  • Figure 11. Global production of 3-HP, 2018-2035 (metric tonnes)
  • Figure 12. Global production of bio-based acrylic acid, 2018-2035 (metric tonnes)
  • Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes)
  • Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes)
  • Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes)
  • Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes)
  • Figure 17. Overview of Toray process
  • Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes)
  • Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes)
  • Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes)
  • Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes)
  • Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes)
  • Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes)
  • Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes)
  • Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes)
  • Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes)
  • Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes)
  • Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes)
  • Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes)
  • Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes)
  • Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes)
  • Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes)
  • Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes)
  • Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes)
  • Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes)
  • Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes:
  • Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes)
  • Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes)
  • Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes)
  • Figure 40. Schematic of WISA plywood home
  • Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes)
  • Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes)
  • Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes)
  • Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes)
  • Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes)
  • Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes)
  • Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes)
  • Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes)
  • Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes)
  • Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes)
  • Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes)
  • Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes)
  • Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes)
  • Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes)
  • Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes)
  • Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes)
  • Figure 57. Global microalgae production, 2018-2035 (million metric tonnes)
  • Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes)
  • Figure 59. Global production of biogas, 2018-2035 (billion m3)
  • Figure 60. Global production of syngas, 2018-2035 (billion m3)
  • Figure 61. formicobio(TM) technology
  • Figure 62. Domsjo process
  • Figure 63. TMP-Bio Process
  • Figure 64. Lignin gel
  • Figure 65. BioFlex process
  • Figure 66. LX Process
  • Figure 67. METNIN(TM) Lignin refining technology
  • Figure 68. Enfinity cellulosic ethanol technology process
  • Figure 69. Precision Photosynthesis(TM) technology
  • Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
  • Figure 71. UPM biorefinery process
  • Figure 72. The Proesa-R Process
  • Figure 73. Goldilocks process and applications
  • Figure 74. Coca-Cola PlantBottle-R
  • Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics
  • Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes)
  • Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)
  • Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)
  • Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025
  • Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes)
  • Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)
  • Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)
  • Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)
  • Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes)
  • Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes)
  • Figure 86. PHA family
  • Figure 88. TEM image of cellulose nanocrystals
  • Figure 89. CNC preparation
  • Figure 90. Extracting CNC from trees
  • Figure 91. CNC slurry
  • Figure 92. CNF gel
  • Figure 93. Bacterial nanocellulose shapes
  • Figure 94. BLOOM masterbatch from Algix
  • Figure 95. Typical structure of mycelium-based foam
  • Figure 96. Commercial mycelium composite construction materials
  • Figure 97. Global production capacities for bioplastics by regionn 2019-2035, 1,000 tonnes
  • Figure 98. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes
  • Figure 99. PHA bioplastics products
  • Figure 100. The global market for biobased and biodegradable plastics for flexible packaging 2019-2033 ('000 tonnes)
  • Figure 101. Production volumes for bioplastics for rigid packaging, 2019-2033 ('000 tonnes)
  • Figure 102. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes
  • Figure 103. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes
  • Figure 104. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes
  • Figure 105. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes
  • Figure 106. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes
  • Figure 107. Biodegradable mulch films
  • Figure 108. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes
  • Figure 109. High purity lignin
  • Figure 110. Lignocellulose architecture
  • Figure 111. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins
  • Figure 112. The lignocellulose biorefinery
  • Figure 113. LignoBoost process
  • Figure 114. LignoForce system for lignin recovery from black liquor
  • Figure 115. Sequential liquid-lignin recovery and purification (SLPR) system
  • Figure 116. A-Recovery+ chemical recovery concept
  • Figure 117. Schematic of a biorefinery for production of carriers and chemicals
  • Figure 118. Organosolv lignin
  • Figure 119. Hydrolytic lignin powder
  • Figure 120. Estimated consumption of lignin, 2019-2035 (000 MT)
  • Figure 121. Pluumo
  • Figure 122. ANDRITZ Lignin Recovery process
  • Figure 123. Anpoly cellulose nanofiber hydrogel
  • Figure 124. MEDICELLU(TM)
  • Figure 125. Asahi Kasei CNF fabric sheet
  • Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
  • Figure 127. CNF nonwoven fabric
  • Figure 128. Roof frame made of natural fiber
  • Figure 129. Beyond Leather Materials product
  • Figure 130. BIOLO e-commerce mailer bag made from PHA
  • Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc
  • Figure 132. Fiber-based screw cap
  • Figure 133. formicobio(TM) technology
  • Figure 134. nanoforest-S
  • Figure 135. nanoforest-PDP
  • Figure 136. nanoforest-MB
  • Figure 137. sunliquid-R production process
  • Figure 138. CuanSave film
  • Figure 139. Celish
  • Figure 140. Trunk lid incorporating CNF
  • Figure 141. ELLEX products
  • Figure 142. CNF-reinforced PP compounds
  • Figure 143. Kirekira! toilet wipes
  • Figure 144. Color CNF
  • Figure 145. Rheocrysta spray
  • Figure 146. DKS CNF products
  • Figure 147. Domsjo process
  • Figure 148. Mushroom leather
  • Figure 149. CNF based on citrus peel
  • Figure 150. Citrus cellulose nanofiber
  • Figure 151. Filler Bank CNC products
  • Figure 152. Fibers on kapok tree and after processing
  • Figure 153. TMP-Bio Process
  • Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna
  • Figure 155. Water-repellent cellulose
  • Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
  • Figure 157. PHA production process
  • Figure 158. CNF products from Furukawa Electric
  • Figure 159. AVAPTM process
  • Figure 160. GreenPower+(TM) process
  • Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
  • Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer)
  • Figure 163. CNF gel
  • Figure 164. Block nanocellulose material
  • Figure 165. CNF products developed by Hokuetsu
  • Figure 166. Marine leather products
  • Figure 167. Inner Mettle Milk products
  • Figure 168. Kami Shoji CNF products
  • Figure 169. Dual Graft System
  • Figure 170. Engine cover utilizing Kao CNF composite resins
  • Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended)
  • Figure 172. Kel Labs yarn
  • Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side)
  • Figure 174. Lignin gel
  • Figure 175. BioFlex process
  • Figure 176. Nike Algae Ink graphic tee
  • Figure 177. LX Process
  • Figure 178. Made of Air's HexChar panels
  • Figure 179. TransLeather
  • Figure 180. Chitin nanofiber product
  • Figure 181. Marusumi Paper cellulose nanofiber products
  • Figure 182. FibriMa cellulose nanofiber powder
  • Figure 183. METNIN(TM) Lignin refining technology
  • Figure 184. IPA synthesis method
  • Figure 185. MOGU-Wave panels
  • Figure 186. CNF slurries
  • Figure 187. Range of CNF products
  • Figure 188. Reishi
  • Figure 189. Compostable water pod
  • Figure 190. Leather made from leaves
  • Figure 191. Nike shoe with beLEAF(TM)
  • Figure 192. CNF clear sheets
  • Figure 193. Oji Holdings CNF polycarbonate product
  • Figure 194. Enfinity cellulosic ethanol technology process
  • Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk
  • Figure 196. XCNF
  • Figure 197: Plantrose process
  • Figure 198. LOVR hemp leather
  • Figure 199. CNF insulation flat plates
  • Figure 200. Hansa lignin
  • Figure 201. Manufacturing process for STARCEL
  • Figure 202. Manufacturing process for STARCEL
  • Figure 203. 3D printed cellulose shoe
  • Figure 204. Lyocell process
  • Figure 205. North Face Spiber Moon Parka
  • Figure 206. PANGAIA LAB NXT GEN Hoodie
  • Figure 207. Spider silk production
  • Figure 208. Stora Enso lignin battery materials
  • Figure 209. 2 wt.% CNF suspension
  • Figure 210. BiNFi-s Dry Powder
  • Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet
  • Figure 212. Silk nanofiber (right) and cocoon of raw material
  • Figure 213. Sulapac cosmetics containers
  • Figure 214. Sulzer equipment for PLA polymerization processing
  • Figure 215. Solid Novolac Type lignin modified phenolic resins
  • Figure 216. Teijin bioplastic film for door handles
  • Figure 217. Corbion FDCA production process
  • Figure 218. Comparison of weight reduction effect using CNF
  • Figure 219. CNF resin products
  • Figure 220. UPM biorefinery process
  • Figure 221. Vegea production process
  • Figure 222. The Proesa-R Process
  • Figure 223. Goldilocks process and applications
  • Figure 224. Visolis' Hybrid Bio-Thermocatalytic Process
  • Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test
  • Figure 226. Worn Again products
  • Figure 227. Zelfo Technology GmbH CNF production process
  • Figure 228. Absolut natural based fiber bottle cap
  • Figure 229. Adidas algae-ink tees
  • Figure 230. Carlsberg natural fiber beer bottle
  • Figure 231. Miratex watch bands
  • Figure 232. Adidas Made with Nature Ultraboost 22
  • Figure 233. PUMA RE:SUEDE sneaker
  • Figure 234. Types of natural fibers
  • Figure 235. Luffa cylindrica fiber
  • Figure 236. Pineapple fiber
  • Figure 237. Typical structure of mycelium-based foam
  • Figure 238. Commercial mycelium composite construction materials
  • Figure 239. SEM image of microfibrillated cellulose
  • Figure 240. Hemp fibers combined with PP in car door panel
  • Figure 241. Car door produced from Hemp fiber
  • Figure 242. Natural fiber composites in the BMW M4 GT4 racing car
  • Figure 243. Mercedes-Benz components containing natural fibers
  • Figure 244. SWOT analysis: natural fibers in the automotive market
  • Figure 245. SWOT analysis: natural fibers in the packaging market
  • Figure 246. SWOT analysis: natural fibers in the appliances market
  • Figure 247. SWOT analysis: natural fibers in the appliances market
  • Figure 248. SWOT analysis: natural fibers in the consumer electronics market
  • Figure 249. SWOT analysis: natural fibers in the furniture market
  • Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD)
  • Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD)
  • Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD)
  • Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD)
  • Figure 254. Asahi Kasei CNF fabric sheet
  • Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
  • Figure 256. CNF nonwoven fabric
  • Figure 257. Roof frame made of natural fiber
  • Figure 258.Tras Rei chair incorporating ampliTex fibers
  • Figure 259. Natural fibres racing seat
  • Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers
  • Figure 261. Fiber-based screw cap
  • Figure 262. Cellugy materials
  • Figure 263. CuanSave film
  • Figure 264. Trunk lid incorporating CNF
  • Figure 265. ELLEX products
  • Figure 266. CNF-reinforced PP compounds
  • Figure 267. Kirekira! toilet wipes
  • Figure 268. DKS CNF products
  • Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE)
  • Figure 270. CNF products from Furukawa Electric
  • Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
  • Figure 272. CNF gel
  • Figure 273. Block nanocellulose material
  • Figure 274. CNF products developed by Hokuetsu
  • Figure 275. Dual Graft System
  • Figure 276. Engine cover utilizing Kao CNF composite resins
  • Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended)
  • Figure 278. Cellulomix production process
  • Figure 279. Nanobase versus conventional products
  • Figure 280. MOGU-Wave panels
  • Figure 281. CNF clear sheets
  • Figure 282. Oji Holdings CNF polycarbonate product
  • Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner
  • Figure 284. XCNF
  • Figure 285. Manufacturing process for STARCEL
  • Figure 286. 2 wt.% CNF suspension
  • Figure 287. Sulapac cosmetics containers
  • Figure 288. Comparison of weight reduction effect using CNF
  • Figure 289. CNF resin products
  • Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD)
  • Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD)
  • Figure 292. Luum Temple, constructed from Bamboo
  • Figure 293. Typical structure of mycelium-based foam
  • Figure 294. Commercial mycelium composite construction materials
  • Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right)
  • Figure 296. Self-healing bacteria crack filler for concrete
  • Figure 297. Self-healing bio concrete
  • Figure 298. Microalgae based biocement masonry bloc
  • Figure 299. Classification of aerogels
  • Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner
  • Figure 301. Monolithic aerogel
  • Figure 302. Aerogel granules
  • Figure 303. Internal aerogel granule applications
  • Figure 304. 3D printed aerogels
  • Figure 305. Lignin-based aerogels
  • Figure 306. Fabrication routes for starch-based aerogels
  • Figure 307. Graphene aerogel
  • Figure 308. Schematic of CCUS in cement sector
  • Figure 309. Carbon8 Systems' ACT process
  • Figure 310. CO2 utilization in the Carbon Cure process
  • Figure 311. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes
  • Figure 312. Transition to hydrogen-based production
  • Figure 313. CO2 emissions from steelmaking (tCO2/ton crude steel)
  • Figure 314. CO2 emissions of different process routes for liquid steel
  • Figure 315. Hydrogen Direct Reduced Iron (DRI) process
  • Figure 316. Molten oxide electrolysis process
  • Figure 317. Steelmaking with CCS
  • Figure 318. Flash ironmaking process
  • Figure 319. Hydrogen Plasma Iron Ore Reduction process
  • Figure 320. Aizawa self-healing concrete
  • Figure 321. ArcelorMittal decarbonization strategy
  • Figure 322. Thermal Conductivity Performance of ArmaGel HT
  • Figure 323. SLENTEX-R roll (piece)
  • Figure 324. Neustark modular plant
  • Figure 325. HIP AERO paint
  • Figure 326. Sunthru Aerogel pane
  • Figure 327. Quartzene-R
  • Figure 328. Schematic of HyREX technology
  • Figure 329. EAF Quantum
  • Figure 330. CNF insulation flat plates
  • Figure 331. Global packaging market by material type
  • Figure 332. Routes for synthesizing polymers from fossil-based and bio-based resources
  • Figure 333. PHA bioplastic packaging products
  • Figure 334. Production capacities of Polyethylene furanoate (PEF) to 2025
  • Figure 335. Production capacities of Polyethylene furanoate (PEF) to 2025
  • Figure 336. Polyethylene furanoate (Bio-PEF) production capacities 2019-2035 (1,000 tons)
  • Figure 337. PHA family
  • Figure 338. PHA production capacities 2019-2035 (1,000 tons)
  • Figure 339. Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit
  • Figure 340. Scale of cellulose materials
  • Figure 341. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms
  • Figure 342. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC
  • Figure 343. Cellulose microfibrils and nanofibrils
  • Figure 344. TEM image of cellulose nanocrystals
  • Figure 345. CNC slurry
  • Figure 346. CNF gel
  • Figure 347. Bacterial nanocellulose shapes
  • Figure 348. BLOOM masterbatch from Algix
  • Figure 349. Typical structure of mycelium-based foam
  • Figure 350. Commercial mycelium composite construction materials
  • Figure 351. Types of bio-based materials used for antimicrobial food packaging application
  • Figure 352. Schematic of gas barrier properties of nanoclay film
  • Figure 353. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test
  • Figure 354. Applications for CO2
  • Figure 355. Life cycle of CO2-derived products and services
  • Figure 356. Conversion pathways for CO2-derived polymeric materials
  • Figure 357. Bioplastics for flexible packaging by bioplastic material type, 2019-2033 ('000 tonnes)
  • Figure 358. Bioplastics for rigid packaging by bioplastic material type, 2019-2033 ('000 tonnes)
  • Figure 359. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate
  • Figure 360. Pluumo
  • Figure 361. Anpoly cellulose nanofiber hydrogel
  • Figure 362. MEDICELLU(TM)
  • Figure 363. Asahi Kasei CNF fabric sheet
  • Figure 364. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric
  • Figure 365. CNF nonwoven fabric
  • Figure 366. Passionfruit wrapped in Xgo Circular packaging
  • Figure 367. BIOLO e-commerce mailer bag made from PHA
  • Figure 368. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc
  • Figure 369. Fiber-based screw cap
  • Figure 370. CuanSave film
  • Figure 371. ELLEX products
  • Figure 372. CNF-reinforced PP compounds
  • Figure 373. Kirekira! toilet wipes
  • Figure 374. Rheocrysta spray
  • Figure 375. DKS CNF products
  • Figure 376. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure
  • Figure 377. PHA production process
  • Figure 378. AVAPTM process
  • Figure 379. GreenPower+(TM) process
  • Figure 380. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials
  • Figure 381. CNF gel
  • Figure 382. Block nanocellulose material
  • Figure 383. CNF products developed by Hokuetsu
  • Figure 384. Kami Shoji CNF products
  • Figure 385. IPA synthesis method
  • Figure 386. Compostable water pod
  • Figure 387. XCNF
  • Figure 388: Innventia AB movable nanocellulose demo plant
  • Figure 389. Shellworks packaging containers
  • Figure 390. Thales packaging incorporating Fibrease
  • Figure 391. Sulapac cosmetics containers
  • Figure 392. Sulzer equipment for PLA polymerization processing
  • Figure 393. Silver / CNF composite dispersions
  • Figure 394. CNF/nanosilver powder
  • Figure 395. Corbion FDCA production process
  • Figure 396. UPM biorefinery process
  • Figure 397. Vegea production process
  • Figure 398. Worn Again products
  • Figure 399. S-CNF in powder form
  • Figure 400. AlgiKicks sneaker, made with the Algiknit biopolymer gel
  • Figure 401. Conceptual landscape of next-gen leather materials
  • Figure 402. Typical structure of mycelium-based foam
  • Figure 403. Hermes bag made of MycoWorks' mycelium leather
  • Figure 404. Ganni blazer made from bacterial cellulose
  • Figure 405. Bou Bag by GANNI and Modern Synthesis
  • Figure 406. Global revenues for bio-based textiles by type, 2018-2035 (millions USD)
  • Figure 407. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD)
  • Figure 408. Beyond Leather Materials product
  • Figure 409. Treekind
  • Figure 410. Examples of Stella McCartney and Adidas products made using leather alternative Mylo
  • Figure 411. Mushroom leather
  • Figure 412. Ecovative Design Forager Hides
  • Figure 413. LUNA-R leather
  • Figure 414. TransLeather
  • Figure 415. Reishi
  • Figure 416. AirCarbon Pellets and AirCarbon Leather
  • Figure 417. Leather made from leaves
  • Figure 418. Nike shoe with beLEAF(TM)
  • Figure 419. Persiskin leather
  • Figure 420. LOVR hemp leather
  • Figure 421. North Face Spiber Moon Parka
  • Figure 422. PANGAIA LAB NXT GEN Hoodie
  • Figure 423. Ultrasuede headrest covers
  • Figure 424. Vegea production process
  • Figure 425. Schematic of production of powder coatings
  • Figure 426. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms
  • Figure 427. PHA family
  • Figure 428: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit
  • Figure 429: Scale of cellulose materials
  • Figure 430. Nanocellulose preparation methods and resulting materials
  • Figure 431: Relationship between different kinds of nanocelluloses
  • Figure 432. SEM image of microfibrillated cellulose
  • Figure 433. Applications of cellulose nanofibers in paints and coatings
  • Figure 434: CNC slurry
  • Figure 435. Types of bio-based materials used for antimicrobial food packaging application
  • Figure 436. BLOOM masterbatch from Algix
  • Figure 437. Global market revenues for bio-based coatings by type, 2018-2035 (billions USD)
  • Figure 438. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate
  • Figure 439. Dulux Better Living Air Clean Bio-based
  • Figure 440. NCCTM Process
  • Figure 441. CNC produced at Tech Futures' pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:
  • Figure 442. Cellugy materials
  • Figure 443. EcoLine-R 3690 (left) vs Solvent-Based Competitor Coating (right)
  • Figure 444. Rheocrysta spray
  • Figure 445. DKS CNF products
  • Figure 446. Domsjo process
  • Figure 447. CNF gel
  • Figure 448. Block nanocellulose material
  • Figure 449. CNF products developed by Hokuetsu
  • Figure 450. VIVAPUR-R MCC Spheres
  • Figure 451. BioFlex process
  • Figure 452. Marusumi Paper cellulose nanofiber products
  • Figure 453. Melodea CNC barrier coating packaging
  • Figure 454. Fluorene cellulose -R powder
  • Figure 455. XCNF
  • Figure 456. Plantrose process
  • Figure 457. Spider silk production
  • Figure 458. CNF dispersion and powder from Starlite
  • Figure 459. 2 wt.% CNF suspension
  • Figure 460. BiNFi-s Dry Powder
  • Figure 461. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet
  • Figure 462. Silk nanofiber (right) and cocoon of raw material
  • Figure 463. traceless-R hooks
  • Figure 464. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test
  • Figure 465. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film
  • Figure 466. Bioalkyd products
  • Figure 467. Liquid biofuel production and consumption (in thousands of m3), 2000-2022
  • Figure 468. Distribution of global liquid biofuel production in 2022
  • Figure 469. Diesel and gasoline alternatives and blends
  • Figure 470. SWOT analysis for biofuels
  • Figure 471. Schematic of a biorefinery for production of carriers and chemicals
  • Figure 472. Hydrolytic lignin powder
  • Figure 473. SWOT analysis for energy crops in biofuels
  • Figure 474. SWOT analysis for agricultural residues in biofuels
  • Figure 475. SWOT analysis for Manure, sewage sludge and organic waste in biofuels
  • Figure 476. SWOT analysis for forestry and wood waste in biofuels
  • Figure 477. Range of biomass cost by feedstock type
  • Figure 478. Regional production of biodiesel (billion litres)
  • Figure 479. SWOT analysis for biodiesel
  • Figure 480. Flow chart for biodiesel production
  • Figure 481. Biodiesel (B20) average prices, current and historical, USD/litre
  • Figure 482. Global biodiesel consumption, 2010-2035 (M litres/year)
  • Figure 483. SWOT analysis for renewable iesel
  • Figure 484. Global renewable diesel consumption, 2010-2035 (M litres/year)
  • Figure 485. SWOT analysis for Bio-aviation fuel
  • Figure 486. Global bio-jet fuel consumption to 2019-2035 (Million litres/year)
  • Figure 487. SWOT analysis for bio-naphtha
  • Figure 488. Bio-based naphtha production capacities, 2018-2035 (tonnes)
  • Figure 489. SWOT analysis biomethanol
  • Figure 490. Renewable Methanol Production Processes from Different Feedstocks
  • Figure 491. Production of biomethane through anaerobic digestion and upgrading
  • Figure 492. Production of biomethane through biomass gasification and methanation
  • Figure 493. Production of biomethane through the Power to methane process
  • Figure 494. SWOT analysis for ethanol
  • Figure 495. Ethanol consumption 2010-2035 (million litres)
  • Figure 496. Properties of petrol and biobutanol
  • Figure 497. Biobutanol production route
  • Figure 498. Biogas and biomethane pathways
  • Figure 499. Overview of biogas utilization
  • Figure 500. Biogas and biomethane pathways
  • Figure 501. Schematic overview of anaerobic digestion process for biomethane production
  • Figure 502. Schematic overview of biomass gasification for biomethane production
  • Figure 503. SWOT analysis for biogas
  • Figure 504. Total syngas market by product in MM Nm3/h of Syngas, 2021
  • Figure 505. SWOT analysis for biohydrogen
  • Figure 506. Waste plastic production pathways to (A) diesel and (B) gasoline
  • Figure 507. Schematic for Pyrolysis of Scrap Tires
  • Figure 508. Used tires conversion process
  • Figure 509. Total syngas market by product in MM Nm3/h of Syngas, 2021
  • Figure 510. Overview of biogas utilization
  • Figure 511. Biogas and biomethane pathways
  • Figure 512. SWOT analysis for chemical recycling of biofuels
  • Figure 513. Process steps in the production of electrofuels
  • Figure 514. Mapping storage technologies according to performance characteristics
  • Figure 515. Production process for green hydrogen
  • Figure 516. SWOT analysis for E-fuels
  • Figure 517. E-liquids production routes
  • Figure 518. Fischer-Tropsch liquid e-fuel products
  • Figure 519. Resources required for liquid e-fuel production
  • Figure 520. Levelized cost and fuel-switching CO2 prices of e-fuels
  • Figure 521. Cost breakdown for e-fuels
  • Figure 522. Pathways for algal biomass conversion to biofuels
  • Figure 523. SWOT analysis for algae-derived biofuels
  • Figure 524. Algal biomass conversion process for biofuel production
  • Figure 525. Classification and process technology according to carbon emission in ammonia production
  • Figure 526. Green ammonia production and use
  • Figure 527. Schematic of the Haber Bosch ammonia synthesis reaction
  • Figure 528. Schematic of hydrogen production via steam methane reformation
  • Figure 529. SWOT analysis for green ammonia
  • Figure 530. Estimated production cost of green ammonia
  • Figure 531. Projected annual ammonia production, million tons
  • Figure 532. CO2 capture and separation technology
  • Figure 533. Conversion route for CO2-derived fuels and chemical intermediates
  • Figure 534. Conversion pathways for CO2-derived methane, methanol and diesel
  • Figure 535. SWOT analysis for biofuels from carbon capture
  • Figure 536. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse
  • Figure 537. Global CO2 capture from biomass and DAC in the Net Zero Scenario
  • Figure 538. DAC technologies
  • Figure 539. Schematic of Climeworks DAC system
  • Figure 540. Climeworks' first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland
  • Figure 541. Flow diagram for solid sorbent DAC
  • Figure 542. Direct air capture based on high temperature liquid sorbent by Carbon Engineering
  • Figure 543. Global capacity of direct air capture facilities
  • Figure 544. Global map of DAC and CCS plants
  • Figure 545. Schematic of costs of DAC technologies
  • Figure 546. DAC cost breakdown and comparison
  • Figure 547. Operating costs of generic liquid and solid-based DAC systems
  • Figure 548. Conversion route for CO2-derived fuels and chemical intermediates
  • Figure 549. Conversion pathways for CO2-derived methane, methanol and diesel
  • Figure 550. CO2 feedstock for the production of e-methanol
  • Figure 551. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2
  • Figure 552. SWOT analysis: CO2 utilization in fuels
  • Figure 553. Audi synthetic fuels
  • Figure 554. Bio-oil upgrading/fractionation techniques
  • Figure 555. SWOT analysis for bio-oils
  • Figure 556. ANDRITZ Lignin Recovery process
  • Figure 557. ChemCyclingTM prototypes
  • Figure 558. ChemCycling circle by BASF
  • Figure 559. FBPO process
  • Figure 560. Direct Air Capture Process
  • Figure 561. CRI process
  • Figure 562. Cassandra Oil process
  • Figure 563. Colyser process
  • Figure 564. ECFORM electrolysis reactor schematic
  • Figure 565. Dioxycle modular electrolyzer
  • Figure 566. Domsjo process
  • Figure 567. FuelPositive system
  • Figure 568. INERATEC unit
  • Figure 569. Infinitree swing method
  • Figure 570. Audi/Krajete unit
  • Figure 571. Enfinity cellulosic ethanol technology process
  • Figure 572: Plantrose process
  • Figure 573. Sunfire process for Blue Crude production
  • Figure 574. Takavator
  • Figure 575. O12 Reactor
  • Figure 576. Sunglasses with lenses made from CO2-derived materials
  • Figure 577. CO2 made car part
  • Figure 578. The Velocys process
  • Figure 579. Goldilocks process and applications
  • Figure 580. The Proesa-R Process
  • Figure 581. Closed-loop manufacturing
  • Figure 582. Sustainable supply chain for electronics
  • Figure 583. Flexible PCB
  • Figure 584. Vapor degreasing
  • Figure 585. Multi-layered PCB
  • Figure 586. 3D printed PCB
  • Figure 587. In-mold electronics prototype devices and products
  • Figure 588. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components
  • Figure 589. Typical structure of mycelium-based foam
  • Figure 590. Flexible electronic substrate made from CNF
  • Figure 591. CNF composite
  • Figure 592. Oji CNF transparent sheets
  • Figure 593. Electronic components using cellulose nanofibers as insulating materials
  • Figure 594. BLOOM masterbatch from Algix
  • Figure 595. Dell's Concept Luna laptop
  • Figure 596. Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics
  • Figure 597. 3D printed circuit boards from Nano Dimension
  • Figure 598. Photonic sintering
  • Figure 599. Laser-induced forward transfer (LIFT)
  • Figure 600. Material jetting 3d printing
  • Figure 601. Material jetting 3d printing product
  • Figure 602. The molecular mechanism of the shape memory effect under different stimuli
  • Figure 603. Supercooled Soldering(TM) Technology
  • Figure 604. Reflow soldering schematic
  • Figure 605. Schematic diagram of induction heating reflow
  • Figure 606. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films
  • Figure 607. Types of PCBs after dismantling waste computers and monitors
  • Figure 608. Global PCB revenues 2018-2035 (billions USD), by substrate types
  • Figure 609. Global sustainable PCB revenues 2018-2035, by type (millions USD)
  • Figure 610. Global sustainable ICs revenues 2018-2035, by type (millions USD)
  • Figure 611. Piezotech-R FC
  • Figure 612. PowerCoat-R paper
  • Figure 613. BeFC-R biofuel cell and digital platform
  • Figure 614. DPP-360 machine
  • Figure 615. P-Flex-R Flexible Circuit
  • Figure 616. Fairphone 4
  • Figure 617. In2tec's fully recyclable flexible circuit board assembly
  • Figure 618. C.L.A.D. system
  • Figure 619. Soluboard immersed in water
  • Figure 620. Infineon PCB before and after immersion
  • Figure 621. Nano OPS Nanoscale wafer printing system
  • Figure 622. Stora Enso lignin battery materials
  • Figure 623. 3D printed electronics
  • Figure 624. Tactotek IME device
  • Figure 625. TactoTek-R IMSE-R SiP - System In Package
  • Figure 626. Verde Bio-based resins
  • Figure 627. Global market revenues for bio-based adhesives & sealants, by types, 2018-2035 (millions USD)
  • Figure 628. Global market revenues for bio-based adhesives & sealants, by market, 2018-2035 (millions USD)
  • Figure 629. sunliquid-R production process
  • Figure 630. Spider silk production
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!