Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1882280

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1882280

The Global Green Hydrogen Market 2026-2036

PUBLISHED:
PAGES: 436 Pages, 172 Tables, 54 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1485
PDF (Corporate License)
USD 2025
PDF (Global Enterprise License)
USD 2497.50
PDF (Global Enterprise and Subsidiaries License)
USD 2835

Add to Cart

The global green hydrogen market is experiencing rapid expansion as economies worldwide pursue decarbonization. The market represents less than 1% of total hydrogen production, but demonstrates extraordinary compound annual growth rates exceeding 45-50% through 2030. Green hydrogen is produced through electrolysis, using electricity to split water into hydrogen and oxygen. When this electricity comes from renewable sources like solar or wind, the hydrogen produced has virtually no CO2 emissions, making it a key solution for decarbonizing transportation, industry, and power generation. The market outlook through 2036 reveals substantial growth potential. A critical inflection point occurs around 2030-2031 when green hydrogen begins achieving cost competitiveness with blue hydrogen in favorable regions, triggering accelerated industrial adoption.

Production volumes underscore the physical scale of this emerging industry. Green hydrogen production started from under 1 million tonnes in 2024 and could potentially reach 100-138 million tonnes by 2036-a 100-150x expansion over twelve years. Regional dynamics reveal significant geographic imbalances shaping the industry's evolution. Cost trajectories remain central to market viability.

The electrolyzer market represents the technology backbone of this transition. Starting from 25 GW/year global manufacturing capacity in 2024-heavily underutilized at 10-15%-capacity is expected to expand to 440-690 GW/year by 2036. Average system prices are declining from $750-1,400/kW in 2024 to $270-390/kW by 2036 through economies of scale and technology improvements. Traditional hydrogen production remains dominated by fossil fuels. Steam methane reforming accounts for approximately 75% of global production, with coal gasification representing about 23% and oil reforming roughly 2%. The transition from these conventional methods to green production represents one of the most significant industrial transformations underway globally, requiring unprecedented infrastructure investment and international coordination.

"The Global Green Hydrogen Market 2026-2036" is a comprehensive 460+ page market report that provides an authoritative analysis of the green hydrogen sector, examining project cancellations, market consolidation, electrolyzer technology developments, and revised demand forecasts through 2036. Essential reading for energy industry stakeholders, investors, policymakers, and technology developers seeking data-driven insights into hydrogen economy opportunities and challenges.

The green hydrogen industry faces significant headwinds including cost competitiveness gaps, electrolyzer manufacturing overcapacity, infrastructure bottlenecks, and the critical offtake crisis affecting project viability. This report delivers realistic market assessments based on 2024-2025 market conditions, providing actionable intelligence on regional market dynamics, technology selection criteria, and investment risk factors shaping the hydrogen economy's evolution.

Report Contents Include:

  • Executive summary with revised market projections addressing project cancellations and market consolidation realities
  • Comprehensive analysis of the cost competitiveness challenge comparing green hydrogen economics across production methods and regions
  • Deep-dive into electrolyzer technologies: alkaline water electrolyzers (AWE), proton exchange membrane (PEM), solid oxide (SOEC), and anion exchange membrane (AEM) systems with performance benchmarks and cost trajectories
  • Assessment of Chinese manufacturing dominance and its impact on global electrolyzer pricing
  • Detailed examination of hard-to-abate sectors including steel production, ammonia manufacturing, and refining applications
  • Hydrogen storage and transport infrastructure analysis covering pipeline networks, maritime shipping, and the ammonia cracking bottleneck
  • End-use market evaluations spanning maritime fuel, sustainable aviation fuel, fuel cell vehicles, power generation, and industrial heating
  • Regional policy landscape analysis for United States, European Union, and China with carbon pricing mechanisms comparison
  • Import-export dynamics and emerging international trade flow projections
  • Market revenue forecasts, production volume projections, and electrolyzer equipment market sizing through 2036
  • 167 company profiles with technology portfolios, strategic developments, and competitive positioning
  • 172 data tables and 54 figures providing comprehensive market quantification

Companies Profiled include:

  • Adani Green Energy
  • Advanced Ionics
  • Aemetis Inc.
  • Air Products
  • Aker Horizons ASA
  • Alchemr Inc.
  • Arcadia eFuels
  • AREVA H2Gen
  • Asahi Kasei
  • Atmonia
  • Avantium
  • BASF
  • Battolyser Systems
  • Blastr Green Steel
  • Bloom Energy
  • Boson Energy Ltd.
  • BP
  • Carbon Sink LLC
  • Cavendish Renewable Technology
  • Ceres Power Holdings plc
  • Chevron Corporation
  • CHARBONE Hydrogen
  • Chiyoda Corporation
  • Cockerill Jingli Hydrogen
  • Convion Ltd.
  • Cummins Inc.
  • C-Zero
  • Cipher Neutron
  • Dimensional Energy
  • Domsjo Fabriker AB
  • Dynelectro ApS
  • Elcogen AS
  • Electric Hydrogen
  • Elogen H2
  • Enapter
  • ENEOS Corporation
  • Equatic
  • Ergosup
  • Everfuel A/S
  • EvolOH Inc.
  • Evonik Industries AG
  • Flexens Oy AB
  • FuelCell Energy
  • FuelPositive Corp.
  • Fusion Fuel
  • Genvia
  • Graforce
  • GeoPura
  • Greenlyte Carbon Technologies
  • Green Fuel
  • Green Hydrogen Systems
  • Heliogen
  • Hitachi Zosen
  • Hoeller Electrolyzer GmbH
  • Honda
  • H2B2 Electrolysis Technologies Inc.
  • H2Electro
  • H2Greem
  • H2 Green Steel
  • H2Pro Ltd.
  • H2U Technologies
  • H2Vector Energy Technologies S.L.
  • Hycamite TCD Technologies Oy
  • HydroLite
  • HydrogenPro
  • Hygenco
  • HydGene Renewables
  • Hydrogenera
  • Hysata
  • Hystar AS
  • IdunnH2
  • Infinium Electrofuels
  • Ionomr Innovations
  • ITM Power
  • Kobelco
  • Kyros Hydrogen Solutions GmbH
  • Lhyfe S.A.
  • LONGi Hydrogen
  • McPhy Energy SAS
  • Matteco
  • NEL Hydrogen
  • NEOM Green Hydrogen Company
  • Newtrace
  • Next Hydrogen Solutions
  • Norsk e-Fuel AS
  • OCOchem
  • Ohmium International
  • 1s1 Energy
  • Ossus Biorenewables
  • OXCCU Tech Ltd.
  • OxEon Energy LLC
  • Parallel Carbon
  • Peregrine Hydrogen

and more....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview: A Sector in Transition
  • 1.2. The Reality Check: Project Cancellations and Market Consolidation
  • 1.3. Policy and Regulatory Landscape: Diverging Trajectories
    • 1.3.1. United States
    • 1.3.2. European Union
    • 1.3.3. China
  • 1.4. Market Economics: The Cost Competitiveness Challenge
  • 1.5. Demand Picture: Industrial Applications Lead, New Markets Struggle
    • 1.5.1. Strong Adoption - Existing Industrial Applications
    • 1.5.2. Struggling Adoption - New Applications
  • 1.6. Regional Market Dynamics: Import-Export Imbalances Emerging
  • 1.7. Market Forecast 2024-2036: Revised Projections
    • 1.7.1. Market Size
    • 1.7.2. Production Volume
    • 1.7.3. Key Applications by 2036 (Demand Breakdown)
  • 1.8. Electrolyzer Technology and Manufacturing: Capacity Overhang
  • 1.9. Investment Outlook: Selective Deployment and Risk Mitigation
  • 1.10. Critical Challenges Facing the Sector
  • 1.11. Outlook: Slower Path to a Hydrogen Economy

2. INTRODUCTION

  • 2.1. Hydrogen classification
    • 2.1.1. Hydrogen colour shades
  • 2.2. Global energy demand and consumption
    • 2.2.1. 2024-2025 Market Reality Check
  • 2.3. The hydrogen economy and production
    • 2.3.1. The Project Cancellation Wave (2024-2025)
  • 2.4. Removing CO2 emissions from hydrogen production
  • 2.5. The Economics of Green Hydrogen
    • 2.5.1. Cost Gaps and Market Imperatives
      • 2.5.1.1. The Cost Competitiveness Challenge: Reality vs. Expectations
    • 2.5.2. Hard-to-Abate Sectors
      • 2.5.2.1. Market Reality: Industrial Replacement vs. New Applications
    • 2.5.3. Steel Production
      • 2.5.3.1. 2024-2025 Steel Sector Update
    • 2.5.4. Ammonia Production
      • 2.5.4.1. The Maritime Fuel Opportunity: Ammonia as Hydrogen Carrier
    • 2.5.5. Chemical Industry and Refining
      • 2.5.5.1. European Refiners: The Unexpected Green Hydrogen Leaders
    • 2.5.6. Current Electrolyzer Technologies
      • 2.5.6.1. 2024-2025 Electrolyzer Market Reality: Overcapacity and Consolidation
        • 2.5.6.1.1. Supply Chain Fragility
      • 2.5.6.2. Alkaline Water Electrolyzers: Proven Technology Dominates Market
        • 2.5.6.2.1. Why Alkaline Won (2024-2025)
      • 2.5.6.3. Proton Exchange Membrane Electrolyzers: Superior Performance, Limited Adoption
        • 2.5.6.3.1. The PEM Paradox
        • 2.5.6.3.2. Why PEM Underperformed Market Expectations
        • 2.5.6.3.3. PEM's Niche Applications (2024-2025)
      • 2.5.6.4. Solid Oxide Electrolyzers: High Efficiency, High Risk, Distant Commercialization
      • 2.5.6.5. 2024-2025 Reality Check
      • 2.5.6.6. Why Alkaline Won Over SOEC
      • 2.5.6.7. Next-Generation Technologies
        • 2.5.6.7.1. Anion Exchange Membrane Electrolyzers: Bridging the Gap-Slowly
        • 2.5.6.7.2. Novel Approaches: Beyond Conventional Electrolysis
    • 2.5.7. The Path Forward: Selective Deployment, Patient Capital, Policy Dependency
      • 2.5.7.1. The New Reality: What Changed
      • 2.5.7.2. Implementation Pathways by Application
        • 2.5.7.2.1. Near-Term Success Cases (2024-2030)
        • 2.5.7.2.2. Medium-Term Opportunities (2030-2036)
        • 2.5.7.2.3. Long-Term/Uncertain (Post-2036)
        • 2.5.7.2.4. Failed Applications (Effectively Abandoned)
  • 2.6. Hydrogen value chain
    • 2.6.1. Production
      • 2.6.1.1. Production Infrastructure Reality (2024-2025)
        • 2.6.1.1.1. Major Operational Facilities (2024-2025)
    • 2.6.2. Transport and storage
      • 2.6.2.1. Hydrogen Transport: The $80-120 Billion Infrastructure Gap
        • 2.6.2.1.1. Current Transport Infrastructure
      • 2.6.2.2. Infrastructure Investment Requirements (2025-2036)
      • 2.6.2.3. Critical Challenges
      • 2.6.2.4. Hydrogen Storage: Limited Options, High Costs
        • 2.6.2.4.1. Storage Methods and Current Status
    • 2.6.3. Utilization
      • 2.6.3.1. Current Utilization by Sector (2024)
  • 2.7. National hydrogen initiatives, policy and regulation
    • 2.7.1. The Policy Dependency Reality
  • 2.8. Hydrogen certification
  • 2.9. Carbon pricing
    • 2.9.1. Overview
      • 2.9.1.1. The Carbon Price Threshold for Green Hydrogen
    • 2.9.2. Global Carbon Pricing Landscape (2024-2025)
      • 2.9.2.1. High Carbon Pricing
      • 2.9.2.2. Moderate Carbon Pricing (Insufficient for Green H2)
      • 2.9.2.3. No/Minimal Carbon Pricing (Green H2 Requires Full Subsidies):
    • 2.9.3. Carbon Pricing Mechanisms Comparison
    • 2.9.4. The "Carbon Price + Mandate + Subsidy" Trinity
      • 2.9.4.1. 2024-2025 Lesson: All Three Required
    • 2.9.5. Carbon Pricing Projections and Green Hydrogen Implications
      • 2.9.5.1. Global Carbon Price Scenarios
    • 2.9.6. Carbon Pricing Alternatives and Supplements
  • 2.10. Market challenges
    • 2.10.1. The Offtake Crisis (Most Critical Challenge)
    • 2.10.2. The Infrastructure Chicken-and-Egg
    • 2.10.3. Cost Competitiveness - The Persistent Gap
    • 2.10.4. Technology Maturity Gap
  • 2.11. Industry developments 2020-2025
  • 2.12. Market map
  • 2.13. Global hydrogen production
    • 2.13.1. Industrial applications
    • 2.13.2. Hydrogen energy
      • 2.13.2.1. Stationary use
      • 2.13.2.2. Hydrogen for mobility
    • 2.13.3. Current Annual H2 Production
      • 2.13.3.1. Global Hydrogen Production: Reality vs. Ambition (2024-2025)
      • 2.13.3.2. Regional Production Patterns and Methods
    • 2.13.4. Leading Green Hydrogen Projects and Operational Status
    • 2.13.5. The Project Cancellation Wave
    • 2.13.6. Hydrogen production processes
      • 2.13.6.1. Regional Variation in Production Methods
      • 2.13.6.2. The Capacity Deployment Gap
      • 2.13.6.3. Production Cost Drivers by Technology
      • 2.13.6.4. Geographic Cost Competitiveness
      • 2.13.6.5. Hydrogen as by-product
      • 2.13.6.6. Reforming
        • 2.13.6.6.1. SMR wet method
        • 2.13.6.6.2. Oxidation of petroleum fractions
        • 2.13.6.6.3. Coal gasification
      • 2.13.6.7. Reforming or coal gasification with CO2 capture and storage
      • 2.13.6.8. Steam reforming of biomethane
      • 2.13.6.9. Water electrolysis
      • 2.13.6.10. The "Power-to-Gas" concept
      • 2.13.6.11. Fuel cell stack
      • 2.13.6.12. Electrolysers
      • 2.13.6.13. Other
        • 2.13.6.13.1. Plasma technologies
        • 2.13.6.13.2. Photosynthesis
        • 2.13.6.13.3. Bacterial or biological processes
        • 2.13.6.13.4. Oxidation (biomimicry)
    • 2.13.7. Production costs
  • 2.14. Global hydrogen demand forecasts
    • 2.14.1. Green and Blue Hydrogen Penetration
    • 2.14.2. Demand by End-Use Application
    • 2.14.3. Green Hydrogen Demand by Application
    • 2.14.4. Regional Demand Patterns
    • 2.14.5. Import-Export Dynamics and Trade Flows
    • 2.14.6. Demand Growth Drivers and Constraints
    • 2.14.7. Market Size and Revenue Forecasts: Recalibrating the Hydrogen Economy
      • 2.14.7.1. Total Hydrogen Market Revenue
      • 2.14.7.2. Electrolyzer Equipment Market
      • 2.14.7.3. Infrastructure Investment Requirements
      • 2.14.7.4. Green Hydrogen Market Revenue by Application
      • 2.14.7.5. Investment Flow Analysis
      • 2.14.7.6. Geographic Distribution of Investment
    • 2.14.8. Market Concentration and Competitive Dynamics

3. GREEN HYDROGEN PRODUCTION

  • 3.1. Overview
  • 3.2. Green hydrogen projects
  • 3.3. Motivation for use
  • 3.4. Decarbonization
  • 3.5. Comparative analysis
  • 3.6. Role in energy transition
  • 3.7. Renewable energy sources
    • 3.7.1. Wind power
    • 3.7.2. Solar Power
    • 3.7.3. Nuclear
    • 3.7.4. Capacities
    • 3.7.5. Costs
  • 3.8. SWOT analysis

4. ELECTROLYZER TECHNOLOGIES

  • 4.1. Introduction
    • 4.1.1. Technical Specifications and Performance Evolution
    • 4.1.2. Chinese Manufacturing Leadership
    • 4.1.3. Architecture and Design Evolution
    • 4.1.4. Cost Structure and Economic Competitiveness
    • 4.1.5. Future Outlook and Development Trajectory
    • 4.1.6. Market Share Projections
  • 4.2. Main types
  • 4.3. Technology Selection Decision Factors
  • 4.4. Balance of Plant
  • 4.5. Characteristics
  • 4.6. Advantages and disadvantages
  • 4.7. Electrolyzer market
    • 4.7.1. Market trends
    • 4.7.2. Market landscape
      • 4.7.2.1. Market Structure Evolution
    • 4.7.3. Innovations
    • 4.7.4. Cost challenges
    • 4.7.5. Why Electrolyzers Differ from Solar/Batteries
    • 4.7.6. Scale-up
    • 4.7.7. Manufacturing challenges
    • 4.7.8. Market opportunity and outlook
  • 4.8. Alkaline water electrolyzers (AWE)
    • 4.8.1. Technology description
    • 4.8.2. AWE plant
    • 4.8.3. Components and materials
    • 4.8.4. Costs
    • 4.8.5. Levelized Cost of Hydrogen (LCOH) from AWE
    • 4.8.6. Companies
  • 4.9. Anion exchange membrane electrolyzers (AEMEL)
    • 4.9.1. Technology description
    • 4.9.2. Technical Specifications - Lab vs. Demonstration vs. Target
    • 4.9.3. AEMEL plant
    • 4.9.4. Components and materials
      • 4.9.4.1. Catalysts
      • 4.9.4.2. Anion exchange membranes (AEMs)
      • 4.9.4.3. Materials
    • 4.9.5. Costs
      • 4.9.5.1. Current Cost Structure (2024-2025)
      • 4.9.5.2. Performance and Cost Positioning
      • 4.9.5.3. Levelized Cost of Hydrogen (LCOH) from AMEL
      • 4.9.5.4. Cost Reduction Pathways
    • 4.9.6. Companies
  • 4.10. Proton exchange membrane electrolyzers (PEMEL)
    • 4.10.1. Technology description
    • 4.10.2. The Iridium Bottleneck - Critical Material Constraint
    • 4.10.3. PEMEL plant
    • 4.10.4. Components and materials
      • 4.10.4.1. Membranes
      • 4.10.4.2. Advanced PEMEL stack designs
      • 4.10.4.3. Plug-and-Play & Customizable PEMEL Systems
      • 4.10.4.4. PEMELs and proton exchange membrane fuel cells (PEMFCs)
    • 4.10.5. Costs
      • 4.10.5.1. Current Cost Structure (2024-2025)
      • 4.10.5.2. Cost Reduction Pathways (2024-2050)
    • 4.10.6. Companies
  • 4.11. Solid oxide water electrolyzers (SOEC)
    • 4.11.1. Technology description
    • 4.11.2. Technical Performance - Theoretical vs. Demonstrated Reality
    • 4.11.3. Why SOEC Cannot Compete - Economic Reality
    • 4.11.4. SOEC plant
    • 4.11.5. Components and materials
      • 4.11.5.1. External process heat
      • 4.11.5.2. Clean Syngas Production
      • 4.11.5.3. Nuclear power
      • 4.11.5.4. SOEC and SOFC cells
        • 4.11.5.4.1. Tubular cells
        • 4.11.5.4.2. Planar cells
      • 4.11.5.5. SOEC Electrolyte
    • 4.11.6. Costs
      • 4.11.6.1. Current Cost Structure (2024-2025)
      • 4.11.6.2. Levelized Cost of Hydrogen (LCOH) from SOEC
    • 4.11.7. Companies
  • 4.12. Other types
    • 4.12.1. Overview
    • 4.12.2. CO2 electrolysis
      • 4.12.2.1. Electrochemical CO2 Reduction
      • 4.12.2.2. Electrochemical CO2 Reduction Catalysts
      • 4.12.2.3. Electrochemical CO2 Reduction Technologies
      • 4.12.2.4. Low-Temperature Electrochemical CO2 Reduction
      • 4.12.2.5. High-Temperature Solid Oxide Electrolyzers
      • 4.12.2.6. Cost
      • 4.12.2.7. Challenges
      • 4.12.2.8. Coupling H2 and Electrochemical CO2
      • 4.12.2.9. Products
    • 4.12.3. Seawater electrolysis
      • 4.12.3.1. Direct Seawater vs Brine (Chlor-Alkali) Electrolysis
      • 4.12.3.2. Key Challenges & Limitations
    • 4.12.4. Protonic Ceramic Electrolyzers (PCE)
    • 4.12.5. Microbial Electrolysis Cells (MEC)
    • 4.12.6. Photoelectrochemical Cells (PEC)
    • 4.12.7. Companies
  • 4.13. Costs
  • 4.14. Water and land use for green hydrogen production
    • 4.14.1. Water Consumption Reality
    • 4.14.2. Land Requirements Reality
  • 4.15. Electrolyzer manufacturing capacities
  • 4.16. Global Market Revenues

5. HYDROGEN STORAGE AND TRANSPORT

  • 5.1. Market overview
  • 5.2. Hydrogen transport methods
    • 5.2.1. Pipeline transportation
      • 5.2.1.1. Current Infrastructure Reality
      • 5.2.1.2. Natural Gas Pipeline Repurposing - The Failed Promise
      • 5.2.1.3. Pipeline Economics and Project Viability
    • 5.2.2. Road or rail transport
    • 5.2.3. Maritime transportation
      • 5.2.3.1. Ammonia vs. Liquid Hydrogen Shipping - The Decisive Battle
      • 5.2.3.2. Ammonia Shipping Infrastructure Requirements
      • 5.2.3.3. Ammonia Cracking - The Critical Bottleneck
    • 5.2.4. On-board-vehicle transport
  • 5.3. Hydrogen compression, liquefaction, storage
    • 5.3.1. Storage Technology Overview and Economics
    • 5.3.2. Solid storage
    • 5.3.3. Liquid storage on support
    • 5.3.4. Underground storage
      • 5.3.4.1. Salt Cavern Storage - Detailed Assessment
      • 5.3.4.2. Alternative Underground Storage Options
    • 5.3.5. Subsea Hydrogen Storage
  • 5.4. Market players

6. HYDROGEN UTILIZATION

  • 6.1. Hydrogen Fuel Cells
    • 6.1.1. Market overview
    • 6.1.2. Critical Market Failure - Light-Duty Vehicles
    • 6.1.3. Why FCEVs Failed
    • 6.1.4. PEM fuel cells (PEMFCs)
    • 6.1.5. Solid oxide fuel cells (SOFCs)
    • 6.1.6. Alternative fuel cells
  • 6.2. Alternative fuel production
    • 6.2.1. Solid Biofuels
    • 6.2.2. Liquid Biofuels
    • 6.2.3. Gaseous Biofuels
    • 6.2.4. Conventional Biofuels
    • 6.2.5. Advanced Biofuels
    • 6.2.6. Feedstocks
    • 6.2.7. Production of biodiesel and other biofuels
    • 6.2.8. Renewable diesel
    • 6.2.9. Biojet and sustainable aviation fuel (SAF)
    • 6.2.10. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
      • 6.2.10.1. Hydrogen electrolysis
      • 6.2.10.2. eFuel production facilities, current and planned
  • 6.3. Hydrogen Vehicles
    • 6.3.1. Market overview
    • 6.3.2. Light-Duty FCEV Market Collapse
    • 6.3.3. Manufacturer Exits and Remaining Players
    • 6.3.4. Refueling Infrastructure Collapse
    • 6.3.5. Heavy-Duty Hydrogen Trucks - Uncertain Future
  • 6.4. Aviation
    • 6.4.1. Market overview
  • 6.5. Ammonia production
    • 6.5.1. Market overview
    • 6.5.2. Current Market Structure
    • 6.5.3. Drivers of Green Ammonia Adoption
    • 6.5.4. Maritime Fuel - The Game Changer
    • 6.5.5. Decarbonisation of ammonia production
    • 6.5.6. Green ammonia synthesis methods
      • 6.5.6.1. Haber-Bosch process
      • 6.5.6.2. Biological nitrogen fixation
      • 6.5.6.3. Electrochemical production
      • 6.5.6.4. Chemical looping processes
    • 6.5.7. Green Ammonia Production Costs
    • 6.5.8. Blue ammonia
      • 6.5.8.1. Blue ammonia projects
    • 6.5.9. Chemical energy storage
      • 6.5.9.1. Ammonia fuel cells
      • 6.5.9.2. Marine fuel
  • 6.6. Methanol production
    • 6.6.1. Market overview
      • 6.6.1.1. Current Market Structure
    • 6.6.2. E-Methanol Economics
    • 6.6.3. Maritime Methanol vs. Ammonia Competition:
    • 6.6.4. Methanol-to gasoline technology
      • 6.6.4.1. Production processes
        • 6.6.4.1.1. Anaerobic digestion
        • 6.6.4.1.2. Biomass gasification
        • 6.6.4.1.3. Power to Methane
  • 6.7. Steelmaking
    • 6.7.1. Market overview
    • 6.7.2. Current Steel Production Methods
      • 6.7.2.1. H-DRI Process Overview
    • 6.7.3. Green Steel Production Costs and Economics
    • 6.7.4. Regional Green Steel Development
    • 6.7.5. Comparative analysis
      • 6.7.5.1. BF-BOF vs. H-DRI + EAF - Comprehensive Comparison:
    • 6.7.6. Hydrogen Direct Reduced Iron (DRI)
    • 6.7.7. Green Steel Market Demand and Willingness-to-Pay:
  • 6.8. Power & heat generation
    • 6.8.1. Market overview
      • 6.8.1.1. Why Hydrogen Failed in Power Sector
    • 6.8.2. Power generation
    • 6.8.3. Economics of Hydrogen Power
    • 6.8.4. Heat Generation
      • 6.8.4.1. Building Heating with Hydrogen - Failed Application
  • 6.9. Maritime
    • 6.9.1. Market overview
    • 6.9.2. IMO Regulatory Framework - The Demand Driver
    • 6.9.3. Ammonia vs. Methanol for Maritime - Technology Competition
    • 6.9.4. Maritime Ammonia Infrastructure Requirements
    • 6.9.5. Ammonia Marine Engines and Fuel Cells
  • 6.10. Fuel cell trains
    • 6.10.1. Market overview

7. COMPANY PROFILES (167 company profiles)

8. APPENDIX

  • 8.1. RESEARCH METHODOLOGY

9. REFERENCES

List of Tables

  • Table 1. Hydrogen colour shades, Technology, cost, and CO2 emissions
  • Table 2. Main applications of hydrogen
  • Table 3. Overview of hydrogen production methods
  • Table 4. Production Cost Reality by Region (2024)
  • Table 5. Transport Cost Comparison (2024 estimates):
  • Table 6. Storage Cost Comparison
  • Table 7. Utilization Summary Table - 2024 vs. 2030 vs. 2036:
  • Table 8. National hydrogen initiatives
  • Table 9. Breakeven Analysis (2024 Costs)
  • Table 10. Carbon Pricing Systems and Green Hydrogen Impact (2024-2025)
  • Table 11. EU ETS Trajectory (2025-2036)
  • Table 12. Market challenges in the hydrogen economy and production technologies
  • Table 13. Challenge Resolution Pathways and Requirements
  • Table 14. Market Challenges by Stakeholder Impact
  • Table 15. Challenge Severity by Application Sector
  • Table 16. Investment Required vs. Committed
  • Table 17. Cost Gap Evolution and Projections
  • Table 18. Technology Readiness vs. Market Requirements
  • Table 19. Green hydrogen industry developments 2020-2025
  • Table 20. Market map for hydrogen technology and production
  • Table 21. Global Hydrogen Production Overview (2024)
  • Table 22. Industrial applications of hydrogen
  • Table 23. Hydrogen energy markets and applications
  • Table 24. Global Hydrogen Production Overview
  • Table 25. Global Hydrogen Production by Method and Region
  • Table 26. Green Hydrogen Production Capacity - Top Projects (2024-2025)
  • Table 27. Cancelled Major Green Hydrogen Projects (2024-2025)
  • Table 28. Hydrogen production processes and stage of development
  • Table 29. Hydrogen Production Methods - Technical and Economic Comparison (2024)
  • Table 30. Regional Production Method Mix (2024)
  • Table 31. Electrolyzer Capacity - Installed vs. Under Construction vs. Announced
  • Table 32. Production Cost Drivers by Method (2024)
  • Table 33. Green Hydrogen Production Cost by Region (2024)
  • Table 34. Comprehensive Production Cost Comparison (2024 vs. 2030 vs. 2036)
  • Table 35. Total Hydrogen Demand Projections (All Production Methods, 2024-2036)
  • Table 36. Low-Emissions Hydrogen (Green + Blue) Demand and Market Share (2024-2036)
  • Table 37. Hydrogen Demand by End-Use Application (2024 vs. 2030 vs. 2036)
  • Table 38. Green Hydrogen Demand by Application (2030 vs. 2036 Projections)
  • Table 39. Regional Hydrogen Demand Projections (2024 vs. 2030 vs. 2036)
  • Table 40. Major Import-Export Flows (2036 Projections)
  • Table 41. Demand Drivers vs. Constraints (Relative Impact Assessment)
  • Table 42. Total Hydrogen Market Revenue by Production Method (2024-2036)
  • Table 43. Electrolyzer Equipment Market Revenue and Capacity Deployment (2024-2036)
  • Table 44. Cumulative Infrastructure Investment Requirements (2024-2036)
  • Table 45. Green Hydrogen Revenue by Application (2030 vs. 2036)
  • Table 46. Cumulative Investment Requirements by Category (2024-2036)
  • Table 47. Investment Distribution by Region (2024-2036 Cumulative)
  • Table 48. Market Concentration Indicators (2024 vs. 2030 vs. 2036)
  • Table 49. Green hydrogen application markets
  • Table 50. Green hydrogen projects
  • Table 51. Traditional Hydrogen Production
  • Table 52. Hydrogen Production Processes
  • Table 53. Comparison of hydrogen types
  • Table 54. Alkaline Electrolyzer Performance Evolution (2020 vs. 2024 vs. 2030 vs. 2036)
  • Table 55. Leading Alkaline Electrolyzer Manufacturers (2024)
  • Table 56. Alkaline Electrolyzer Architecture Comparison
  • Table 57. Alkaline Electrolyzer Cost Breakdown (2024 vs. 2036 Projection)
  • Table 58. Alkaline Technology Roadmap (2024-2036)
  • Table 59. Alkaline Market Share Evolution by Application (2024 vs. 2030 vs. 2036)
  • Table 60. Electrolyzer Technology Comparison - Technical and Commercial Status (2024)
  • Table 61. Technology Selection by Application Type (2024-2025 Market Patterns)
  • Table 62. Characteristics of typical water electrolysis technologies
  • Table 63. Advantages and disadvantages of water electrolysis technologies
  • Table 64. Global Electrolyzer Market Evolution (2020-2024 Actual, 2025-2036 Projections)
  • Table 65. Manufacturer Viability Assessment (2024)
  • Table 66. Cost Reality vs. Projections (2022 Forecast vs. 2024 Actual vs. 2030 Revised)
  • Table 67. Market Opportunity Scenarios (2024-2036 Cumulative)
  • Table 68. Regional Opportunity Distribution (Base Case)
  • Table 69. Classifications of Alkaline Electrolyzers
  • Table 70. Advantages & limitations of AWE
  • Table 71. Key performance characteristics of AWE
  • Table 72. Detailed AWE System Cost Breakdown - Chinese vs. Western Manufacturers (2024)
  • Table 73. AWE LCOH by Region - Current (2024) vs. Projected (2030, 2036)
  • Table 74. Cost Component Breakdown (Typical Case: Spain, 2024)
  • Table 75. Detailed AWE System Cost Breakdown - Chinese vs. Western Manufacturers (2024)
  • Table 76. Major AWE Manufacturers
  • Table 77. AEM Performance - Laboratory vs. Demonstration vs. Commercial Targets
  • Table 78. Comparison of Commercial AEM Materials
  • Table 79. AEM Electrolyzer Cost Structure - Current (2024) vs. Projected Commercial (2032-2036)
  • Table 80. AEM Competitive Positioning vs. Established Technologies
  • Table 81. Companies in the AMEL market
  • Table 82. Iridium Supply Constraint vs. PEM Electrolyzer Scaling Requirements
  • Table 83. PEM Electrolyzer Detailed Cost Breakdown - 2024 vs. 2030 vs. 2036 Projections
  • Table 84. PEM Cost Reduction Pathways - Feasibility and Impact Assessment
  • Table 85. Companies in the PEMEL market
  • Table 86. SOEC Performance - Theoretical vs. Pilot Demonstration vs. Commercial Requirements
  • Table 87. LCOH Comparison - SOEC vs. Alkaline in Best-Case SOEC Applications (2024)
  • Table 88. SOEC System Cost Breakdown - 2024 vs. 2032-2036 Projection (If Commercialized)
  • Table 89. SOEC LCOH Scenarios - Best Case to Worst Case (2024)
  • Table 90. Why SOEC Failed - Summary Assessment:
  • Table 91. Companies in the SOEC market
  • Table 92. Other types of electrolyzer technologies
  • Table 93. Electrochemical CO2 Reduction Technologies/
  • Table 94. Cost Comparison of CO2 Electrochemical Technologies
  • Table 95. Direct Seawater vs. Desalinated Water Electrolysis Comparison
  • Table 96. PEC vs. PV+Electrolysis Pathway Comparison
  • Table 97. Companies developing other electrolyzer technologies
  • Table 98. Electrolyzer Technology Cost Comparison - 2024 vs. 2030 vs. 2036 (All Technologies)
  • Table 99. Water Requirements for Green Hydrogen Production (2024 Analysis)
  • Table 100. Land Footprint for Green Hydrogen Production (Renewable Energy + Electrolyzer)
  • Table 101. Global Electrolyzer Manufacturing Capacity - Current (2024) vs. Projected (2030, 2036)
  • Table 102. Global Electrolyzer Equipment Market Size, 2018-2036 (US$ Billions)
  • Table 103. Hydrogen Infrastructure Investment Requirements vs. Commitments (2024-2036)
  • Table 104. Hydrogen Transport Methods - Comprehensive Comparison (2024 Assessment)
  • Table 105. Existing and Planned Hydrogen Pipeline Infrastructure (2024-2036)
  • Table 106. Natural Gas Pipeline Repurposing Challenges and Reality
  • Table 107. Hydrogen Pipeline Economics - Representative 500 km Regional Project
  • Table 108. Road/Rail Transport Economics
  • Table 109. Ammonia vs. Liquid H2 Shipping - Comprehensive Comparison
  • Table 110. Ammonia Shipping Value Chain - Investment and Development Status (2024-2036)
  • Table 111. Ammonia Cracking Facility Economics
  • Table 112. Hydrogen Storage Technologies - Comprehensive Comparison (2024)
  • Table 113. Salt Cavern Hydrogen Storage Economics and Availability
  • Table 114. Regional Salt Cavern Storage Availability and Implications
  • Table 115. Depleted Gas Fields and Aquifers - Uncertain Potential
  • Table 116. Major Hydrogen Infrastructure Companies - Segmented by Category
  • Table 117. Pipeline Infrastructure Developers
  • Table 118. Ammonia Shipping & Terminals
  • Table 119. Storage Technology Providers
  • Table 120. Refueling Infrastructure (Declining Sector)
  • Table 121. Fuel Cell Market by Application - 2024 Reality vs. 2020-2022 Projections
  • Table 122. PEMFC Market Segmentation and Cost Structure
  • Table 123. Categories and examples of solid biofuel
  • Table 124. Comparison of biofuels and e-fuels to fossil and electricity
  • Table 125. Classification of biomass feedstock
  • Table 126. Biorefinery feedstocks
  • Table 127. Feedstock conversion pathways
  • Table 128. Biodiesel production techniques
  • Table 129. Advantages and disadvantages of biojet fuel
  • Table 130. Production pathways for bio-jet fuel
  • Table 131. Applications of e-fuels, by type
  • Table 132. Overview of e-fuels
  • Table 133. Benefits of e-fuels
  • Table 134. eFuel production facilities, current and planned
  • Table 135. Hydrogen Vehicle Market - 2024 Reality and 2036 Projections
  • Table 136. FCEV vs. BEV Competitive Position - Why Hydrogen Lost
  • Table 137. FCEV Manufacturer Status - Exits and Commitments
  • Table 138. Hydrogen Refueling Station Status by Region
  • Table 139. Heavy-Duty Truck Competition - FCEV vs. BEV vs. Diesel (2024)
  • Table 140. Heavy-Duty Hydrogen Truck Manufacturers and Status
  • Table 141. Global Ammonia Production and Hydrogen Source
  • Table 142. Green Ammonia Demand Drivers and Market Segments (2024-2036)
  • Table 143. Ammonia as Maritime Fuel - Development Timeline
  • Table 144. Green Ammonia Production Cost by Region (2024 vs. 2030 vs. 2036)
  • Table 145. Blue ammonia projects
  • Table 146. Ammonia fuel cell technologies
  • Table 147. Market overview of green ammonia in marine fuel
  • Table 148. Summary of marine alternative fuels
  • Table 149. Estimated costs for different types of ammonia
  • Table 150. Global Methanol Market by Source and Application (2024)
  • Table 151. E-Methanol Applications (2024 vs. 2036)
  • Table 152. E-Methanol Production Costs by Region and CO2 Source (2024 vs. 2036)
  • Table 153. Maritime Fuel Competition - Methanol vs. Ammonia
  • Table 154. Comparison of biogas, biomethane and natural gas
  • Table 155. Global Steel Production by Method and Decarbonization Potential (2024)
  • Table 156. Steel Production Cost Comparison - BF-BOF vs. H-DRI + EAF (2024 and 2036)
  • Table 157. Green Steel Projects and Capacity by Region (2024-2036)
  • Table 158. Leading Green Steel Projects
  • Table 159. Steelmaking Technology Comparison
  • Table 160. H-DRI Process Parameters and Requirements
  • Table 161. Green Steel Customer Segments and Premium Acceptance (2024)
  • Table 162. Hydrogen vs. Competing Technologies for Power Generation
  • Table 163. Hydrogen Power Generation Technologies
  • Table 164. Levelized Cost of Electricity (LCOE) - Hydrogen vs. Alternatives
  • Table 165. Heating Technology Comparison - Hydrogen vs. Alternatives
  • Table 166. Maritime Fuel Consumption and Decarbonization Pathways (2024)
  • Table 167. IMO GHG Regulations and Impact
  • Table 168. Ammonia vs. Methanol - Detailed Maritime Fuel Comparison
  • Table 169. Maritime Ammonia Value Chain Investment Needs (2024-2036)
  • Table 170. Ammonia Propulsion Technologies for Maritime
  • Table 171. Rail Electrification Alternatives - Hydrogen vs. Competition
  • Table 172. Hydrogen Train Projects

List of Figures

  • Figure 1. Hydrogen value chain
  • Figure 2. Principle of a PEM electrolyser
  • Figure 3. Power-to-gas concept
  • Figure 4. Schematic of a fuel cell stack
  • Figure 5. High pressure electrolyser - 1 MW
  • Figure 6. SWOT analysis: green hydrogen
  • Figure 7. Types of electrolysis technologies
  • Figure 8. Typical Balance of Plant including Gas processing
  • Figure 9. Schematic of alkaline water electrolysis working principle
  • Figure 10. Alkaline water electrolyzer
  • Figure 11. Typical system design and balance of plant for an AEM electrolyser
  • Figure 12. Schematic of PEM water electrolysis working principle
  • Figure 13. Typical system design and balance of plant for a PEM electrolyser
  • Figure 14. Schematic of solid oxide water electrolysis working principle
  • Figure 15. Typical system design and balance of plant for a solid oxide electrolyser
  • Figure 16. Process steps in the production of electrofuels
  • Figure 17. Mapping storage technologies according to performance characteristics
  • Figure 18. Production process for green hydrogen
  • Figure 19. E-liquids production routes
  • Figure 20. Fischer-Tropsch liquid e-fuel products
  • Figure 21. Resources required for liquid e-fuel production
  • Figure 22. Levelized cost and fuel-switching CO2 prices of e-fuels
  • Figure 23. Cost breakdown for e-fuels
  • Figure 24. Hydrogen fuel cell powered EV
  • Figure 25. Green ammonia production and use
  • Figure 26. Classification and process technology according to carbon emission in ammonia production
  • Figure 27. Schematic of the Haber Bosch ammonia synthesis reaction
  • Figure 28. Schematic of hydrogen production via steam methane reformation
  • Figure 29. Estimated production cost of green ammonia
  • Figure 30. Renewable Methanol Production Processes from Different Feedstocks
  • Figure 31. Production of biomethane through anaerobic digestion and upgrading
  • Figure 32. Production of biomethane through biomass gasification and methanation
  • Figure 33. Production of biomethane through the Power to methane process
  • Figure 34. Transition to hydrogen-based production
  • Figure 35. Hydrogen Direct Reduced Iron (DRI) process
  • Figure 36. Three Gorges Hydrogen Boat No. 1
  • Figure 37. PESA hydrogen-powered shunting locomotive
  • Figure 38. Symbiotic(TM) technology process
  • Figure 39. Alchemr AEM electrolyzer cell
  • Figure 40. Domsjo process
  • Figure 41. EL 2.1 AEM Electrolyser
  • Figure 42. Enapter - Anion Exchange Membrane (AEM) Water Electrolysis
  • Figure 43. Direct MCH-R process
  • Figure 44. FuelPositive system
  • Figure 45. Using electricity from solar power to produce green hydrogen
  • Figure 46. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process
  • Figure 47. Hystar PEM electrolyser
  • Figure 48. OCOchem's Carbon Flux Electrolyzer
  • Figure 49. CO2 hydrogenation to jet fuel range hydrocarbons process
  • Figure 50. The Plagazi -R process
  • Figure 51. Sunfire process for Blue Crude production
  • Figure 52. O12 Reactor
  • Figure 53. Sunglasses with lenses made from CO2-derived materials
  • Figure 54. CO2 made car part
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!