Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1884179

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1884179

The Global Co-Packaged Optics Market 2026-2036

PUBLISHED:
PAGES: 434 Pages, 228 Tables, 54 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 1485
PDF (Corporate License)
USD 2025
PDF (Global Enterprise License)
USD 2497.50
PDF (Global Enterprise and Subsidiaries License)
USD 2835

Add to Cart

The global co-packaged optics (CPO) market stands at an inflection point, poised to fundamentally transform data center interconnect architecture over the coming decade. Driven primarily by the explosive growth of artificial intelligence workloads, particularly large language models and generative AI, CPO technology addresses critical bottlenecks in bandwidth, power consumption, and latency that conventional pluggable optical modules can no longer overcome.

Co-packaged optics integrates optical transceivers directly with switch ASICs or processors within the same package, dramatically shortening the electrical path between computing silicon and optical conversion. This architectural shift reduces power consumption from approximately 15 picojoules per bit with pluggable modules to around 5 picojoules per bit, with a projected path to below 1 picojoule per bit. The technology also enables significantly higher bandwidth density at the package edge, essential for next-generation switches operating at 51.2 terabits per second and beyond.

The market divides into two primary application segments: scale-out and scale-up networks. Scale-out applications encompass traditional data center switching fabrics using Ethernet or InfiniBand protocols, connecting racks and clusters across the facility. Scale-up applications target GPU-to-GPU and accelerator interconnects within AI training clusters, replacing copper-based solutions like NVIDIA's NVLink with optical alternatives that offer superior reach, bandwidth, and power efficiency. Initial CPO deployments are expected to target scale-up AI networks before expanding to broader scale-out infrastructure.

NVIDIA's announcement of Spectrum-X and Quantum-X silicon photonics switches at GTC 2025 marked a watershed moment for the industry, signaling that the dominant AI infrastructure provider is fully committed to CPO technology. These switches leverage TSMC's System on Integrated Chips (SoIC) technology with 3D hybrid bonding to achieve unprecedented integration density. Broadcom, the leading switch ASIC supplier, has pursued a complementary strategy with its Bailly CPO platform, emphasizing an open ecosystem approach that works with multiple packaging and photonics partners.

The CPO supply chain represents one of the semiconductor industry's most complex ecosystems, spanning photonic integrated circuit design, laser sources, electronic interface circuits, advanced packaging, optical alignment, and system integration. TSMC has emerged as a central player, providing both leading-edge logic processes and advanced packaging platforms including CoWoS and COUPE that enable tight integration of photonic and electronic chiplets. Critical bottlenecks remain in optical assembly and testing, where sub-micron alignment tolerances and specialized equipment create manufacturing challenges that the industry is actively working to resolve.

Key technology decisions facing the industry include the choice between 2.5D and 3D integration approaches, external versus integrated laser sources, and edge coupling versus grating coupling for fiber attachment. Most leading implementations have converged on external laser source architectures that keep temperature-sensitive lasers separate from heat-generating ASICs, improving reliability and enabling redundancy. Hybrid bonding technology is increasingly favored for achieving the interconnect density required for next-generation optical engines.

Hyperscale cloud providers including AWS, Microsoft Azure, Google, and Meta represent the primary demand drivers, with their massive AI infrastructure investments creating urgent requirements for CPO solutions. These companies collectively invest tens of billions of dollars annually in data center infrastructure and are actively evaluating or developing CPO technology for deployment beginning in 2026-2027.

The competitive landscape features established semiconductor giants alongside well-funded startups. Companies like Ayar Labs, Lightmatter, and Celestial AI are pioneering novel architectures including 3D photonic interposers and photonic fabric technologies that may reshape the market. Meanwhile, traditional optical component suppliers including Lumentum, Coherent, and Marvell are adapting their portfolios for CPO applications. As AI model sizes continue growing exponentially and data center power constraints tighten, CPO technology offers a compelling solution to interconnect challenges that will only intensify. The technology's ability to deliver higher bandwidth at lower power positions it as essential infrastructure for the AI era.

"The Global Co-Packaged Optics Market 2026-2036" delivers comprehensive analysis of the rapidly emerging CPO industry, examining how this transformative technology is reshaping data centre interconnect architecture to meet the unprecedented bandwidth demands of artificial intelligence and machine learning workloads. As hyperscale operators and AI infrastructure providers confront critical limitations in power consumption, latency, and bandwidth density with conventional pluggable optical modules, co-packaged optics has emerged as the definitive next-generation solution, integrating optical transceivers directly with switch ASICs and accelerators to achieve dramatic improvements in performance and efficiency.

This authoritative report provides semiconductor industry professionals, investors, data centre operators, and technology strategists with detailed market forecasts projecting CPO growth from nascent commercial deployments through mass adoption, with granular segmentation by application (scale-out networking and scale-up AI interconnects), integration technology (2D, 2.5D, and 3D packaging), and end-use sector. The research examines the complete CPO value chain, from photonic integrated circuit design and laser sources through advanced semiconductor packaging and system integration, identifying critical bottlenecks, emerging solutions, and strategic opportunities across each segment.

Drawing on extensive primary research including interviews with industry leaders across the CPO ecosystem, the report delivers actionable intelligence on technology roadmaps from dominant players including NVIDIA and Broadcom, evaluates competing packaging approaches from leading OSATs and foundries, and assesses the readiness of hyperscale customers to deploy CPO at scale. Detailed company profiles provide strategic analysis of 55 organisations actively shaping the CPO landscape, while comprehensive benchmarking enables direct comparison of competing technologies, products, and ecosystem strategies.

Report contents include:

  • Market Analysis and Forecasts
    • Ten-year market forecasts (2026-2036) for total CPO market size and revenue
    • Optical I/O for AI interconnect unit shipment and revenue projections
    • CPO network switch unit shipment and market size forecasts
    • Server board, CPU, and GPU/accelerator demand forecasts driving CPO adoption
    • Segmentation by EIC/PIC integration technology and packaging approach
    • Regional analysis and adoption timeline projections
  • Technology Analysis
    • Comprehensive examination of photonic integrated circuit (PIC) architectures and silicon photonics
    • Optical engine design principles, components, and performance benchmarks
    • Detailed analysis of 2D, 2.5D, and 3D EIC/PIC integration approaches
    • Through-silicon via (TSV), fan-out, glass-based, and hybrid bonding packaging technologies
    • Fiber array unit (FAU) alignment challenges and solutions
    • Laser integration methods including external laser source architectures
    • Universal Chiplet Interconnect Express (UCIe) implications for CPO
  • Application Analysis
    • Scale-out network switch CPO for Ethernet and InfiniBand fabrics
    • Scale-up optical I/O for GPU-to-GPU and AI accelerator interconnects
    • Comparison of CPO, pluggable optics, and copper interconnect approaches
    • Power efficiency analysis: CPO vs. pluggable vs. copper (pJ/bit benchmarks)
    • Latency performance comparisons across interconnect technologies
    • Migration roadmaps from copper to optical in AI infrastructure
  • Industry and Supply Chain Intelligence
    • Complete CPO industrial ecosystem mapping across ten value chain segments
    • PIC design, ASIC/xPU, laser sources, wafer/substrate suppliers analysis
    • EIC, SerDes, PHY, and retimer supplier landscape
    • Connector and fiber infrastructure provider assessment
    • Foundry capabilities for silicon photonics and advanced packaging
    • OSAT packaging, assembly, and test service provider evaluation
    • System integrator and ODM/OEM positioning
    • Hyperscaler end customer requirements and adoption timelines
    • Ecosystem interdependencies and strategic implications
  • Competitive Intelligence
    • NVIDIA vs. Broadcom strategic comparison in AI infrastructure and CPO
    • Product benchmarking: Spectrum-X, Quantum-X, Bailly platform specifications
    • Divergent ecosystem strategies and partnership analysis
    • Start-up innovation landscape: Ayar Labs, Lightmatter, Celestial AI, and others
    • Foundry platform comparison: TSMC COUPE/iOIS, GlobalFoundries Fotonix
  • Challenges and Solutions
    • SerDes bottlenecks in high-bandwidth systems and mitigation approaches
    • Thermal management challenges in CPO module design
    • Optical alignment precision requirements and manufacturing solutions
    • Reliability considerations: redundancy, monitoring, and self-correction
    • Testing strategies for wafer-level and package-level optical validation
    • Standardisation efforts and interoperability considerations

Companies Profiled include:

  • Alphawave Semi
  • AMD
  • Amkor Technology
  • ASE Holdings
  • Astera Labs
  • Avicena
  • AXT
  • Ayar Labs
  • Broadcom
  • CEA-Leti
  • Celestial AI
  • Cisco
  • Coherent
  • Corning
  • Credo
  • DenseLight
  • EFFECT Photonics
  • EVG
  • Fabrinet
  • FOCI (Fiber Optical Communication Inc.)
  • FormFactor
  • Foxconn
  • GlobalFoundries
  • Henkel
  • Hewlett Packard Enterprise
  • imec
  • Intel
  • JCET Group
  • Lightmatter
  • LioniX International
  • Lumentum
  • MACOM
  • Marvell
  • MediaTek
  • Molex
  • Nubis Communications
  • NVIDIA
  • OpenLight
  • Ranovus
  • Rockley Photonics
  • Samtec
  • Scintil Photonics

and more.......

Key Questions Answered:

  • What is the total addressable market for co-packaged optics through 2036?
  • How will CPO adoption differ between scale-out networking and scale-up AI applications?
  • Which advanced packaging technologies offer the best performance-cost trade-offs for CPO?
  • How are NVIDIA and Broadcom positioning their CPO strategies differently?
  • What role will TSMC's COUPE and iOIS platforms play in CPO manufacturing?
  • Which laser integration approach will achieve commercial dominance?
  • How will optical alignment and fiber attachment challenges be resolved at scale?
  • When will hyperscale data centres begin volume CPO deployment?
  • What are the key investment opportunities across the CPO value chain?
  • How does CPO compare to high-density connector alternatives being developed?

Who Should Purchase This Report:

  • Semiconductor company executives evaluating CPO market entry or expansion
  • Photonics and optical component manufacturers assessing strategic positioning
  • Advanced packaging service providers planning CPO capability development
  • Data centre operators and hyperscale infrastructure planners
  • AI chip and accelerator designers exploring optical interconnect integration
  • Venture capital and private equity investors targeting CPO opportunities
  • Investment analysts covering semiconductor, photonics, and data centre sectors
  • Strategic planners at system OEMs and ODMs
  • Supply chain managers responsible for optical and packaging sourcing
  • Technology policy makers assessing semiconductor industry trends

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report Overview and Key Findings
  • 1.2. Market Definition and Scope
    • 1.2.1. Definition of Co-Packaged Optics (CPO)
    • 1.2.2. Scope of This Report
  • 1.3. Key Market Drivers and Restraints
  • 1.4. Modern High-Performance AI Data Centre Architecture
    • 1.4.1. Physical Infrastructure Hierarchy
    • 1.4.2. Network Architecture
    • 1.4.3. Power and Cooling Considerations
  • 1.5. Switches: Key Components in Modern Data Centres
    • 1.5.1. Switch Architecture Evolution
    • 1.5.2. Switch ASIC Technology
    • 1.5.3. Optical Transceiver Requirements
  • 1.6. Advancements in Switch IC Bandwidth and the Need for CPO Technology
    • 1.6.1. Historical Bandwidth Scaling
    • 1.6.2. SerDes Technology Evolution
    • 1.6.3. Electrical Signalling Limits
    • 1.6.4. Front-Panel Density Constraints
    • 1.6.5. Power Consumption Trajectory
  • 1.7. Overview of Key Challenges in Data Centre Architectures
    • 1.7.1. Thermal Management
    • 1.7.2. Power Delivery
    • 1.7.3. Cable Management
    • 1.7.4. Reliability and Serviceability
    • 1.7.5. Standards and Interoperability
  • 1.8. Key Trend of Optical Transceivers in High-End Data Centres
    • 1.8.1. Historical Evolution
    • 1.8.2. Technology Migration Path
  • 1.9. Design Decisions: CPO vs. Pluggables Comparison
    • 1.9.1. Performance Comparison
    • 1.9.2. Operational Comparison
    • 1.9.3. Economic Comparison
  • 1.10. What is an Optical Engine (OE)?
    • 1.10.1. Functional Description
    • 1.10.2. Optical Engine Components
    • 1.10.3. Performance Parameters
  • 1.11. Heterogeneous Integration and Co-Packaged Optics
    • 1.11.1. The Heterogeneous Integration Imperative
    • 1.11.2. Integration Approaches for CPO
    • 1.11.3. TSMC's Role in Heterogeneous Integration
  • 1.15. Overview of Interconnection Techniques in Semiconductor Packaging
    • 1.15.1. Wire Bonding
    • 1.15.2. Flip-Chip Bumping
    • 1.15.3. Micro-Bumping
    • 1.15.4. Through-Silicon Via (TSV)
    • 1.15.5. Hybrid Bonding
    • 1.15.6. Redistribution Layer (RDL)
  • 1.16. Key CPO Applications: Network Switch and Computing Optical I/O
    • 1.16.1. Scale-Out Network Switching
    • 1.16.2. Scale-Up Computing Optical I/O
  • 1.17. EIC/PIC Integration by Advanced Interconnect Techniques
    • 1.17.1. Integration Requirements
  • 1.18. 2D to 3D EIC/PIC Integration Options
    • 1.18.1. 2D Integration Architecture
    • 1.18.2. 2.5D Integration Architecture
    • 1.18.3. 3D Integration Architecture
  • 1.19. Benchmark of Different Packaging Technologies for EIC/PIC
  • 1.20. Examples of Packaging a 3D Optical Engine with an IC
    • 1.20.1. Configuration 1: EIC-on-PIC with Micro-Bumps
    • 1.20.2. Configuration 2: PIC-on-EIC with Through-Silicon Vias
    • 1.20.3. Configuration 3: 3D SoIC with Hybrid Bonding
  • 1.21. Types of CPO + XPU/Switch ASIC Packaging Structures
    • 1.21.1. Type I: Optical Engines on Package Periphery
    • 1.21.2. Type II: Optical Engines Co-Located with ASIC on Interposer
    • 1.21.3. Type III: 3D Stacked Optical Engines
  • 1.22. Challenges and Future Potential of CPO Technology
    • 1.22.1. Technical Challenges
    • 1.22.2. Commercial Challenges
      • 1.22.2.1. Future Potential
  • 1.23. NVIDIA vs. Broadcom: Strategic Comparison in AI Infrastructure and CPO
    • 1.23.1. NVIDIA's CPO Strategy: Vertical Integration
    • 1.23.2. Broadcom's CPO Strategy: Open Ecosystem
    • 1.23.3. Competitive Dynamics
    • 1.23.4. CPO Product Benchmark: NVIDIA vs. Broadcom
    • 1.23.5. NVIDIA and Broadcom: Divergent CPO Ecosystems
  • 1.24. Current AI System Architecture
    • 1.24.1. NVIDIA DGX/HGX Architecture
  • 1.25. Future AI Architecture
  • 1.26. Market Forecast
    • 1.26.1. Server Boards, CPUs, and GPUs/Accelerators
    • 1.26.2. Optical I/O for AI Interconnect CPO Forecast (Units Shipped)
    • 1.26.3. Optical I/O for AI Interconnect CPO Forecast (Revenue/Market Size)
    • 1.26.4. CPO Network Switches for AI Accelerators Forecast (Units Shipped)
    • 1.26.5. CPO Network Switches for AI Accelerators Forecast (Market Size and Revenue)
    • 1.26.6. Total CPO Market Overview
    • 1.26.7. Total CPO by Different EIC/PIC Integration Technology (Unit Shipments)
    • 1.26.8. System Integration of Network Switches by Packaging Technologies
    • 1.26.9. System Integration of Optical I/O Forecast by Packaging Technologies
  • 1.27. Co-packaged optics (CPO) industrial ecosystem
    • 1.27.1. PIC Design Segment
    • 1.27.2. ASIC and xPU Design Segment
    • 1.27.3. Laser Sources Segment
    • 1.27.4. SOI Wafer and Epi-Wafer Segment
    • 1.27.5. EIC, Retimers, SerDes, and PHY Segment
    • 1.27.6. Connectors and Fibers Segment
    • 1.27.7. Foundries Segment
    • 1.27.8. Packaging, Assembling, and Testing Segment
    • 1.27.9. System and Equipment Segment
    • 1.27.10. End Customers (Hyperscalers) Segment
    • 1.27.11. Ecosystem Interdependencies and Strategic Implications

2. CHALLENGES AND SOLUTIONS FOR FUTURE AI SYSTEMS

  • 2.1. The Rise and Challenges of Large Language Models (LLMs)
    • 2.1.1. The Explosive Growth of AI and Generative AI
      • 2.1.1.1. Historical Context and Acceleration
      • 2.1.1.2. Compute Demand Scaling
      • 2.1.1.3. Generative AI Market Expansion
    • 2.1.2. Modern High-Performance AI Data Centre Requirements
      • 2.1.2.1. Compute Density Requirements
      • 2.1.2.2. Network Topology Requirements
      • 2.1.2.3. Availability and Reliability Requirements
    • 2.1.3. NVIDIA's State-of-the-Art AI Systems
      • 2.1.3.1. DGX H100 and HGX H100
    • 2.1.4. Switches: Key Components in Modern Data Centres
      • 2.1.4.1. Switch Hierarchy in AI Data Centres
  • 2.2. Scale-Up, Scale-Out, and Scale-Across Networks
    • 2.2.1. Scale-Up Networks: GPU-to-GPU Interconnects
      • 2.2.1.1. NVIDIA NVLink Implementation
      • 2.2.1.2. CPO Value Proposition for Scale-Up
    • 2.2.2. Scale-Out Networks: Rack-to-Rack Communications
      • 2.2.2.1. Ethernet-Based Scale-Out
      • 2.2.2.2. InfiniBand for AI
      • 2.2.2.3. CPO Value Proposition for Scale-Out
    • 2.2.3. Scale-Up, Scale-Out, and Scale-Across Comparison
  • 2.3. Challenges in Network Switch Interconnects for High-End Data Centres
    • 2.3.1. Roadmap of Interconnect Technology for Network Switches in High-End Data Centres
      • 2.3.1.1. Technology Generations
    • 2.3.2. SerDes Bottleneck in High-Bandwidth Systems
      • 2.3.2.1. SerDes Function
      • 2.3.2.2. Channel Loss Challenges
    • 2.3.3. Solutions to SerDes Bottlenecks in High-Bandwidth Systems
      • 2.3.3.1. Linear-Drive Electronics
      • 2.3.3.2. Near-Package Optics
      • 2.3.3.3. Co-Packaged Optics
    • 2.3.4. Pluggable Optics: Current Bottlenecks and Limitations
      • 2.3.4.1. Form Factor Constraints
      • 2.3.4.2. Electrical Interface Limitations
      • 2.3.4.3. Thermal Management Challenges
      • 2.3.4.4. Serviceability Trade-offs
    • 2.3.5. On-Board Optics (OBO)
    • 2.3.6. Co-Packaged Optics (CPO)
      • 2.3.6.1. CPO Architecture
      • 2.3.6.2. Key Enabling Technologies
      • 2.3.6.3. Performance Benefits
      • 2.3.6.4. Implementation Challenges
    • 2.3.7. Transmission Losses in Pluggable Optical Transceiver Connections
      • 2.3.7.1. Total Path Loss
    • 2.3.8. Pluggable Optics vs. CPO
    • 2.3.9. Design Decisions for CPO Compared to Pluggables
    • 2.3.10. Advancements in Switch IC Bandwidth and the Need for CPO Technology
      • 2.3.10.1. Bandwidth Scaling Trajectory
      • 2.3.10.2. Physical Constraints at Scale
    • 2.3.11. L2 Frontside Network Architecture Diagram: CPO vs. Non-CPO
  • 2.4. Challenges in Compute Switch Interconnects (Optical I/O) for High-End Data Centres
    • 2.4.1. Number of Copper Wires in Current AI System Interconnects
      • 2.4.1.1. NVLink Copper Cable Count
      • 2.4.1.2. SuperPOD Cable Complexity
    • 2.4.2. Limitations of Current Copper Systems in AI
    • 2.4.3. NVIDIA's Connectivity Choices: Copper vs. Optical for High-Bandwidth Systems
      • 2.4.3.1. Current Generation: Copper-Centric
      • 2.4.3.2. Transition Generation: Hybrid Approach
      • 2.4.3.3. Future Generation: Optical-First
      • 2.4.3.4. Strategic Implications
    • 2.4.4. Copper vs. Optical for High-Bandwidth Systems: Benchmark
    • 2.4.5. Migration from Copper to Optical Interconnects for High-End AI Systems
    • 2.4.6. Current AI System Architecture
    • 2.4.7. L1 Backside Compute Architecture with Copper Systems
    • 2.4.8. L1 Backside Compute Architecture with Optical Interconnect: Co-Packaged Optics (CPO)
    • 2.4.9. Opportunities for Swapping Copper to Optical
  • 2.5. Future AI Systems in High-End Data Centres
    • 2.5.1. Power Efficiency Comparison: CPO vs. Pluggable Optics vs. Copper Interconnects
      • 2.5.1.1. Power Consumption Breakdown
    • 2.5.2. Latency of 60cm Data Transmission Technology Benchmark
    • 2.5.3. Future AI Architecture (Short to Mid-Term)
    • 2.5.4. Future AI Architecture (Long-Term)

3. INTRODUCTION TO CO-PACKAGED OPTICS (CPO)

  • 3.1. Photonic Integrated Circuits (PICs) Key Concepts
    • 3.1.1. What are Photonic Integrated Circuits (PICs)?
      • 3.1.1.1. Fundamental Definition
      • 3.1.1.2. Material Platforms
      • 3.1.1.3. Integration Levels
    • 3.1.2. PICs vs. Silicon Photonics: What are the Differences?
      • 3.1.2.1. Silicon Photonics: A Specific Implementation
      • 3.1.2.2. Why Silicon Photonics Dominates CPO
    • 3.1.3. PIC Architecture
      • 3.1.3.1. Transmit Path Architecture
      • 3.1.3.2. Receive Path Architecture
      • 3.1.3.3. Supporting Functions
    • 3.1.4. Advantages and Challenges of PICs
  • 3.2. Optical Engine (OE)
    • 3.2.1. What is an Optical Engine?
      • 3.2.1.1. Optical Engine Composition
      • 3.2.1.2. Optical Engine vs. Pluggable Transceiver
    • 3.2.2. How an Optical Engine Works
      • 3.2.2.1. Transmit Path Operation
      • 3.2.2.2. Receive Path Operation
      • 3.2.2.3. Critical Performance Parameters
    • 3.2.3. Optical Power Supplies
      • 3.2.3.1. Why External Laser Sources?
      • 3.2.3.2. External Laser Source Architectures
      • 3.2.3.3. Optical Power Delivery
  • 3.3. Co-Packaged Optics
    • 3.3.1. Three Key Concepts in Co-Packaged Optics (CPO)
      • 3.3.1.1. Concept 1: Proximity Integration
      • 3.3.1.2. Concept 2: Functional Partitioning
      • 3.3.1.3. Concept 3: Coherent Ecosystem Development
    • 3.3.2. Key Technology Building Blocks for CPO
      • 3.3.2.1. Silicon Photonics PIC
      • 3.3.2.2. Electronic IC (EIC)
      • 3.3.2.3. EIC-PIC Integration
      • 3.3.2.4. Fibre Array Units (FAUs)
      • 3.3.2.5. External Laser Source
      • 3.3.2.6. Advanced Packaging Platform
    • 3.3.3. Benefits of CPO: Latency Reduction
      • 3.3.3.1. Sources of Latency in Optical Interconnects
      • 3.3.3.2. CPO Latency Advantages
    • 3.3.4. Benefits of CPO: Power Consumption Reduction
      • 3.3.4.1. Power Consumption Breakdown
      • 3.3.4.2. Why CPO Consumes Less Power
    • 3.3.5. Benefits of CPO: Data Rate Improvements
      • 3.3.5.1. Pluggable Scaling Limitations
      • 3.3.5.2. CPO Scaling Advantages
      • 3.3.5.3. Data Rate Scaling Roadmap
    • 3.3.6. Overview of Value Proposition of CPO
      • 3.3.6.1. Value for Hyperscale Data Centre Operators
      • 3.3.6.2. Value for Network Equipment Vendors
      • 3.3.6.3. Value for the Technology Ecosystem
    • 3.3.7. Future Challenges in CPO
      • 3.3.7.1. Manufacturing and Yield Challenges
      • 3.3.7.2. Thermal Management Challenges
      • 3.3.7.3. Serviceability and Reliability Challenges
      • 3.3.7.4. Ecosystem and Standardisation Challenges
      • 3.3.7.5. Cost Challenges
  • 3.4. CPO Standards
    • 3.4.1. OIF Co-Packaging Framework
    • 3.4.2. OIF Standards for 1.6T and 3.2T CPO Module
    • 3.4.3. External Laser Small Form Pluggable (ELSFP) Implementation Agreement
    • 3.4.4. Telemetry and Management
    • 3.4.5. OIF's CEI-112G XSR / XSR+ PAM4
    • 3.4.6. UCIe Standard and Its Relationship to CPO
    • 3.4.7. The CPO Standards Process in China

4. PACKAGING FOR CO-PACKAGED OPTICS (CPO)

  • 4.1. Introduction to CPO Packaging
    • 4.1.1. Key Components to be Packaged in an Optical Transceiver
      • 4.1.1.1. Photonic Integrated Circuit (PIC)
      • 4.1.1.2. Electronic Integrated Circuit (EIC)
      • 4.1.1.3. Laser Source Interface
      • 4.1.1.4. Fibre Array Unit (FAU)
      • 4.1.1.5. Host ASIC Interface
    • 4.1.2. Heterogeneous Integration and Co-Packaged Photonics
      • 4.1.2.1. Why Heterogeneous Integration for CPO?
      • 4.1.2.2. Heterogeneous Integration Approaches for CPO
      • 4.1.2.3. Integration Hierarchy for CPO
    • 4.1.3. CPO for Network Switch: Packaging Concept
      • 4.1.3.1. Switch Architecture with CPO
      • 4.1.3.2. Package Configuration Options
      • 4.1.3.3. Packaging Requirements for Switch CPO
    • 4.1.4. 1.6 Tbps Co-Packaged Optics for Network Switch
      • 4.1.4.1. Integration Approach
    • 4.1.5. CPO as Optical I/O for XPUs: Packaging Concept
      • 4.1.5.1. The Scale-Up Interconnect Challenge
      • 4.1.5.2. XPU-CPO Packaging Concept
      • 4.1.5.3. Implementation Approaches
      • 4.1.5.4. NVIDIA's Approach to XPU Optical I/O
      • 4.1.5.5. Packaging Implications for XPU Optical I/O
      • 4.1.5.6. System Architecture Evolution
    • 4.1.6. CPO Integration for Compute Silicon
      • 4.1.6.1. System Configuration
      • 4.1.6.2. Integration Architecture
      • 4.1.6.3. Thermal Partitioning
      • 4.1.6.4. Enabled Architectures
    • 4.1.7. Overview of CPO Packaging Technologies
  • 4.2. Overview and Development Roadmap of 2.5D and 3D Advanced Semiconductor Packaging Technologies
    • 4.2.1. Evolution Roadmap of Semiconductor Packaging
    • 4.2.2. Semiconductor Packaging Overview
    • 4.2.3. Key Metrics for Advanced Semiconductor Packaging Performance
    • 4.2.4. Overview of Interconnection Techniques in Semiconductor Packaging
    • 4.2.5. Overview of 2.5D Packaging Structure
    • 4.2.6. 2.5D Package Components
    • 4.2.7. Benefits for CPO
    • 4.2.8. Challenges for CPO
  • 4.3. 2.5D Silicon-Based Packaging Technologies
    • 4.3.1. 2.5D Packaging Involving Silicon as Interconnect
    • 4.3.2. Silicon Interposer Technology
    • 4.3.3. Silicon Bridge Technology
    • 4.3.4. CPO Implications
    • 4.3.5. Through-Silicon Via (TSV): Current State and Future
      • 4.3.5.1. TSV Fabrication Process
      • 4.3.5.2. TSV Technology Generations
      • 4.3.5.3. TSV Challenges for CPO
      • 4.3.5.4. Future TSV Development
    • 4.3.6. Development Trends for 2.5D Silicon-Based Packaging
      • 4.3.6.1. Interposer Size Scaling
      • 4.3.6.2. Routing Density Advancement
      • 4.3.6.3. Cost Reduction Initiatives
      • 4.3.6.4. Integration with Advanced Features
    • 4.3.7. Silicon Interposer vs. Silicon Bridge Benchmark
      • 4.3.7.1. Implications for CPO
  • 4.4. 2.5D Organic-Based Packaging Technologies
    • 4.4.1. 2.5D Packaging: High-Density Fan-Out (FO) Packaging
      • 4.4.1.1. Fan-Out Technology Concept
      • 4.4.1.2. High-Density Fan-Out Variants
      • 4.4.1.3. Advantages for CPO
      • 4.4.1.4. Challenges for CPO
    • 4.4.2. Redistribution Layer (RDL)
      • 4.4.2.1. RDL Fabrication Process
      • 4.4.2.2. RDL Design Considerations for CPO
    • 4.4.3. Electronic Interconnects: SiO2 vs. Organic Dielectric
    • 4.4.4. Panel Level Fab-Out
      • 4.4.4.1. Panel-Level Processing
      • 4.4.4.2. Advantages for CPO
      • 4.4.4.3. Challenges for CPO
    • 4.4.5. Wafer Level Fan-Out
      • 4.4.5.1. Wafer-Level Processing
      • 4.4.5.2. Advantages for WLFO
      • 4.4.5.3. Challenges for WLFO
    • 4.4.6. Wafer-Level Fan-Out vs. Panel-Level Fan-Out
      • 4.4.6.1. Selection Criteria for CPO
    • 4.4.7. Key Trends in Fan-Out Packaging
    • 4.4.8. Challenges in Future Fan-Out Processes
      • 4.4.8.1. Die Shift and Placement Accuracy
      • 4.4.8.2. Warpage Control
      • 4.4.8.3. Yield and Cost
      • 4.4.8.4. High-Frequency Performance
  • 4.5. 2.5D Glass-Based Packaging Technologies
    • 4.5.1. Roles of Glass in Semiconductor Packaging
      • 4.5.1.1. Glass Properties Relevant to Packaging
      • 4.5.1.2. Applications in Packaging
      • 4.5.1.3. Glass Core as Interposer for Advanced Semiconductor Packaging
    • 4.5.2. Overcoming Limitations of Silicon Interposers with Glass
      • 4.5.2.1. Size Limitation
      • 4.5.2.2. Optical Opacity
      • 4.5.2.3. Dielectric Loss
      • 4.5.2.4. Cost Structure
      • 4.5.2.5. Remaining Silicon Advantages
    • 4.5.3. Glass vs. Molding Compound
      • 4.5.3.1. Implications for CPO
    • 4.5.4. Glass Core (Interposer) Package: Process Flow
    • 4.5.5. Challenges of Glass Packaging
      • 4.5.5.1. Handling and Breakage
      • 4.5.5.2. Via Formation and Metallisation
      • 4.5.5.3. Thermal Conductivity
      • 4.5.5.4. RDL Adhesion
      • 4.5.5.5. Warpage Control
  • 4.6. 3D Advanced Semiconductor Packaging Technologies
    • 4.6.1. Evolution of Bumping Technologies
      • 4.6.1.1. Solder Bumps (C4)
      • 4.6.1.2. Copper Pillar Bumps
      • 4.6.1.3. Micro-Bumps
      • 4.6.1.4. Hybrid Bonding (Bumpless)
    • 4.6.2. Challenges in Scaling Bumps
      • 4.6.2.1. Mechanical Challenges
      • 4.6.2.2. Electrical Challenges
      • 4.6.2.3. Manufacturing Challenges
      • 4.6.2.4. Implications for CPO
    • 4.6.3. Micro-Bump for Advanced Semiconductor Packaging
      • 4.6.3.1. Micro-Bump Structure
    • 4.6.4. Bumpless Cu-Cu Hybrid Bonding
      • 4.6.4.1. Hybrid Bonding Concept
      • 4.6.4.2. Process Fundamentals
      • 4.6.4.3. Key Characteristics
      • 4.6.4.4. Benefits for CPO
    • 4.6.5. Three Ways of Cu-Cu Hybrid Bonding: Benchmark
      • 4.6.5.1. Die-to-Die (D2D)
      • 4.6.5.2. Die-to-Wafer (D2W)
      • 4.6.5.3. Wafer-to-Wafer (W2W)
    • 4.6.6. Challenges in Cu-Cu Hybrid Bonding Manufacturing Process
  • 4.7. CPO Packaging: EIC and PIC Integration
    • 4.7.1. EIC/PIC Integration by Conventional Interconnect Techniques
      • 4.7.1.1. Wire Bond Integration
      • 4.7.1.2. Flip-Chip Integration (2D)
    • 4.7.2. EIC/PIC Integration by Emerging Interconnect Techniques
      • 4.7.2.1. 2.5D Interposer Integration
      • 4.7.2.2. 3D Micro-Bump Stacking
      • 4.7.2.3. 3D Hybrid Bonding
    • 4.7.3. 2D to 3D EIC/PIC Integration Options
      • 4.7.3.1. Technology Transition Drivers
      • 4.7.3.2. 2D to 3D Integration Evolution
    • 4.7.4. Integration Roadmap by CPO Segment
    • 4.7.5. Benchmarking of Different Packaging Technologies for EIC/PIC
    • 4.7.6. Pros and Cons of 2D Integration of EIC/PIC
    • 4.7.7. Pros and Cons of 2.5D Integration of EIC/PIC
    • 4.7.8. Pros and Cons of 3D Hybrid Integration of EIC/PIC
    • 4.7.9. Pros and Cons of 3D Monolithic Integration of EIC/PIC
  • 4.8. TSV for EIC/PIC Integration
    • 4.8.1. TSV for EIC/PIC Integration in CPO
      • 4.8.1.1. TSV Configurations for EIC/PIC
      • 4.8.1.2. Design Considerations
    • 4.8.2. Benefits of TSV for PIC/EIC Integration
    • 4.8.3. Cisco Packaging Architectures of Optical Engine Over Generations
    • 4.8.4. Cisco: 2.5D Chip-on-Chip (CoC) Packaging Architecture for EIC/PIC Integration
      • 4.8.4.1. Architecture Description
      • 4.8.4.2. Manufacturing Considerations
    • 4.8.5. Cisco: 3D TSV for PIC/EIC Integration
      • 4.8.5.1. Architecture Description
      • 4.8.5.2. Benefits of TSV Integration
      • 4.8.5.3. Manufacturing Considerations
    • 4.8.6. Key TSV Fabrication Steps and Challenges in CPO
      • 4.8.6.1. Fabrication Process Flow
    • 4.8.7. Packaging Options for Silicon Photonics
    • 4.8.8. Pros and Cons of 2.5D Si Interposer for EIC/PIC Integration
  • 4.9. Fan-Out for EIC/PIC Integration
    • 4.9.1. ASE's Proposed Fan-Out Solution for CPO Packaging
      • 4.9.1.1. ASE Fan-Out CPO Concept
    • 4.9.2. FOPOP from ASE: Process
    • 4.9.3. Analysis of FOPOP vs. Wire Bond Packaging for CPO
    • 4.9.4. Optical Packaging Process Considerations for Silicon Photonics - ASE
    • 4.9.5. SPIL's Fan-Out Embedded Bridge (FOEB) Structure for PIC/EIC Integration in CPO
    • 4.9.6. Process Flow of Integrating PIC and EIC in a FOEB Structure
    • 4.9.7. Process Challenges in Packaging Optical Engines
    • 4.9.8. Challenges of Using Fan-Out for EIC/PIC Integration
  • 4.10. Glass-Based CPO Packaging Technologies
    • 4.10.1. Glass-Based Co-Packaged Optics
      • 4.10.1.1. Corning's Glass CPO Vision
    • 4.10.2. Glass CPO Package Architecture
    • 4.10.3. Glass-Based CPO Process Development
      • 4.10.3.1. Corning's 102.4 Tb/s Test Vehicle Demonstration
  • 4.11. Hybrid Bonding for EIC/PIC Integration
    • 4.11.1. TSMC: Integrated HPC Technology Platform for AI
    • 4.11.2. iOIS: Integrated Optical Interconnection System from TSMC
    • 4.11.3. Combining EIC and PIC with 3D SoIC Bond
    • 4.11.4. Roadmap of Bond Pitch Scaling
  • 4.12. System Integration of Optical Engine and ASIC/XPU
    • 4.12.1. Co-Packaging vs. Co-Packaged Optics (CPO)
    • 4.12.2. Three Types of CPO + XPU/Switch ASIC Packaging Structures
      • 4.12.2.1. Type 1: 2D/2.5D Peripheral Integration
      • 4.12.2.2. Type 2: 2.5D with Embedded Bridge
      • 4.12.2.3. Type 3: 3D Stacked Integration
  • 4.13. Future 3D-CPO Structure
    • 4.13.1. Future 3D-CPO Architecture Vision
    • 4.13.2. NVIDIA's 3D Integration of SoC, HBM, EIC, and PIC on Co-Packaged Substrates
      • 4.13.2.1.1. Architecture Overview
      • 4.13.2.1.2. Integration Approach
      • 4.13.2.1.3. Key Innovations
  • 4.14. Optical Alignment and Laser Integration
    • 4.14.1. How CPO is Built and the Bottleneck
    • 4.14.2. The fibre attach bottleneck
    • 4.14.3. Interface Between Coupler and FAU
    • 4.14.4. Grating vs. Edge Couplers: Challenges in High-Density Optical I/O for Silicon Photonics
    • 4.14.5. Challenges in High-Density Optical I/O for Silicon Photonics
  • 4.15. Fiber Array Unit (FAU)
    • 4.15.1. Optical Alignment Challenges and Solutions
    • 4.15.2. Two Alignment Approaches
    • 4.15.3. Reducing Optical Fiber Packaging Complexity
    • 4.15.4. Key Technical Challenges
      • 4.15.4.1. The Size Mismatch Between Silicon Waveguides and Planar Optical Fibers
    • 4.15.5. Fiber Attach Methods
    • 4.15.6. Key Players in FAU for CPO
    • 4.15.7. Benchmark of Optical Fiber Alignment Structure Variations
    • 4.15.8. Suppliers of Other Optical Components in CPO
  • 4.16. Suppliers of Other Optical Components in CPO
  • 4.17. Laser Integration
    • 4.17.1. On-Chip Light Source Integration Methods
    • 4.17.2. External Lasers for CPO
    • 4.17.3. Laser Attach Technology Benchmark
    • 4.17.4. Benchmark of Different Laser Integration Technologies

5. CO-PACKAGED OPTICS MARKET ANALYSIS

  • 5.1. CPO Market Definition and Scope
  • 5.2. CPO Market Size and Growth Projections
  • 5.3. Switch CPO Market Analysis
    • 5.3.1. Market Overview and Drivers
    • 5.3.2. Deployment Timeline and Adoption Phases
    • 5.3.3. Volume Projections and Market Sizing
    • 5.3.4. Market Concentration and Regional Distribution
    • 5.3.5. Pricing Trajectory and Cost Dynamics
  • 5.4. XPU Optical I/O Market Analysis
    • 5.4.1. Market Drivers and Value Proposition
    • 5.4.2. Adoption Timeline and Platform Evolution
    • 5.4.3. Volume and Revenue Projections
    • 5.4.4. Market Segmentation by Platform
    • 5.4.5. Technology Requirements and Differentiation
  • 5.5. CPO Pricing and Cost Analysis
    • 5.5.1. Current Pricing Landscape
    • 5.5.2. Cost Trajectory and Reduction Drivers
    • 5.5.3. Cost Parity Timeline and Dynamics
    • 5.5.4. Pricing Strategy Implications
  • 5.6. Regional Market Dynamics
    • 5.6.1. North America
    • 5.6.2. Asia-Pacific
    • 5.6.3. Europe
    • 5.6.4. Rest of World
  • 5.7. Total Addressable Market Analysis
    • 5.7.1. Core TAM Segments
    • 5.7.2. Serviceable Addressable Market (SAM)
  • 5.8. Market Forecast by Component
  • 5.9. Market Forecast by Technology Generation
    • 5.9.1. Optical Engine Bandwidth Evolution
    • 5.9.2. Generation Lifecycle Analysis
  • 5.10. Market Restraints and Barriers
    • 5.10.1. Manufacturing Yield and Cost
    • 5.10.2. Serviceability and Field Replacement Concerns
    • 5.10.3. Standards Maturity and Interoperability
    • 5.10.4. Supply Chain Capacity Constraints
    • 5.10.5. Competitive Alternatives
  • 5.11. Adoption Curve Analysis
    • 5.11.1. Technology Adoption Framework
      • 5.11.1.1. Innovators (2024-2026)
      • 5.11.1.2. Early Adopters (2026-2028)
      • 5.11.1.3. Early Majority (2028-2031)
      • 5.11.1.4. Late Majority (2031-2034)
      • 5.11.1.5. Laggards (2034+)
    • 5.11.2. Segment-Specific Adoption Curves
  • 5.12. Adoption Accelerators and Inhibitors
    • 5.12.1. Adoption Curve Implications
  • 5.13. Competitive Landscape Evolution
    • 5.13.1. Current Competitive Positioning
    • 5.13.2. Integrated Device Manufacturers (IDMs)
    • 5.13.3. Silicon Photonics Specialists
    • 5.13.4. Foundry/OSAT Providers
    • 5.13.5. System Vendors
    • 5.13.6. Laser Suppliers
    • 5.13.7. Competitive Dynamics and Market Structure Evolution
      • 5.13.7.1. Near-Term Dynamics (2025-2028)
        • 5.13.7.1.1. Expected Evolution (2028)
      • 5.13.7.2. Mid-Term Dynamics (2028-2032)
        • 5.13.7.2.1. Expected Evolution (2032)
      • 5.13.7.3. Long-Term Dynamics (2032-2036)
        • 5.13.7.3.1. Expected Evolution (2036)
    • 5.13.8. Vertical Integration Trends
      • 5.13.8.1. Integration Strategy Framework
        • 5.13.8.1.1. Full Vertical Integration (Broadcom, Intel Model)
        • 5.13.8.1.2. Partial Integration (Cisco, NVIDIA Model)
        • 5.13.8.1.3. Fabless/Assembly-Light (Ayar Labs, Ranovus Model)
        • 5.13.8.1.4. Platform Provider (TSMC Model)
      • 5.13.8.2. Strategic Implications of Integration Trends
  • 5.14. Scenario Analysis
    • 5.14.1. Scenario Framework
    • 5.14.2. Scenario Definitions
    • 5.14.3. Bull Case Scenario
    • 5.14.4. Base Case Scenario
    • 5.14.5. Bear Case Scenario
    • 5.14.6. Scenario Comparison and Key Variables

6. GLOBAL MARKET TRENDS IN DATACOM

  • 6.1. Introduction to DATACOM Market Dynamics
    • 6.1.1. Overview of the Data Communications Market
      • 6.1.1.1. Market Definition and Scope
      • 6.1.1.2. Market Size and Growth
    • 6.1.2. Key Market Drivers
      • 6.1.2.1. Artificial Intelligence and Machine Learning
      • 6.1.2.2. Cloud Computing Growth
      • 6.1.2.3. Data Growth
      • 6.1.2.4. Power and Sustainability Pressures
  • 6.2. Application Trends
    • 6.2.1. AI and Machine Learning Workload Growth
      • 6.2.1.1. The AI Training Revolution
      • 6.2.1.2. Training Cluster Architecture Evolution
      • 6.2.1.3. AI Inference Deployment
      • 6.2.1.4. Market Quantification
      • 6.2.1.5. Implications for CPO
    • 6.2.2. Hyperscale Data Centre Expansion
      • 6.2.2.1. Defining Hyperscale
    • 6.2.3. Global Hyperscale Capacity
    • 6.2.4. Regional Distribution
    • 6.2.5. Hyperscaler Investment Trends
      • 6.2.5.1. Capital expenditure acceleration
      • 6.2.5.2. AI-Specific Infrastructure
      • 6.2.5.3. Implications for CPO
    • 6.2.6. Edge Computing and Distributed AI
      • 6.2.6.1. Market Growth
    • 6.2.7. Edge AI Applications
    • 6.2.8. Edge Network Architecture
  • 6.3. Technology Trends
    • 6.3.1. Technology Trends Overview
      • 6.3.1.1. Key Technology Vectors
      • 6.3.1.2. Technology Interdependencies
    • 6.3.2. Technology Trends: Packaging
    • 6.3.3. Universal Chiplet Interconnect Express (UCIe)
    • 6.3.4. Laser Sources for CPO
    • 6.3.5. External vs. Integrated Laser

7. MARKET OUTLOOK

  • 7.1. Scale-Out Outlook
    • 7.1.1. Scale-Out CPO Market Evolution
      • 7.1.1.1. Scale-Out Market Drivers
      • 7.1.1.2. Market Evolution Phases
      • 7.1.1.3. Scale-Out CPO Market Forecast
    • 7.1.2. Scale-Out Technology Roadmap
      • 7.1.2.1. Technology Generation Evolution
      • 7.1.2.2. Technology Enablers by Generation
    • 7.1.3. Scale-Out Key Players and Competitive Landscape
  • 7.2. Scale-Up Outlook
    • 7.2.1. Scale-Up CPO Market Evolution
    • 7.2.2. Copper to Optical Transition
    • 7.2.3. Optical I/O Solution
    • 7.2.4. Scale-Up CPO Market Forecast
    • 7.2.5. Market Evolution Phases
    • 7.2.6. Scale-Up Technology Roadmap
      • 7.2.6.1. NVIDIA Optical I/O Evolution
      • 7.2.6.2. AMD Optical I/O Evolution
      • 7.2.6.3. Custom Silicon Optical I/O
    • 7.2.7. Scale-Up Key Players and Competitive Landscape
      • 7.2.7.1. Competitive Landscape Overview
  • 7.3. High-Density Connectors
    • 7.3.1. High-Density Connectors vs. CPO
      • 7.3.1.1. Scenario 1: Connectors Enable Extended Pluggable (Low CPO Impact)
      • 7.3.1.2. Scenario 2: Connectors Complement CPO (Moderate Impact)
      • 7.3.1.3. Scenario 3: Connectors Enable "Near-Packaged" Optics (Moderate CPO Impact)
      • 7.3.1.4. Scenario 4: Connector Development Delays (Positive CPO Impact)
  • 7.4. Emerging Supply Chain Dynamics
    • 7.4.1. Geographic Concentration in CPO Supply Chains
  • 7.5. Third-Party Suppliers and Systems Integrators
    • 7.5.1. Multi-Tier Supply Chain Architecture
      • 7.5.1.1. Tier 1: Silicon Photonics Platform
      • 7.5.1.2. Tier 2: CPO Assembly (OSAT)
      • 7.5.1.3. Tier 3: Fiber Array Unit (FAU) Suppliers
      • 7.5.1.4. Tier 4: External Laser Source (ELS) Suppliers
      • 7.5.1.5. Tier 5: Optical Fiber Supply
      • 7.5.1.6. Tier 6: Optical Sub-Assembly Integration
    • 7.5.2. Strategic Implications for Supply Chain Participants

8. COMPANY PROFILES(61 company profiles)

9. APPENDIX

  • 9.1. Research Methodology and Data Sources

10. REFERENCES

List of Tables

  • Table 1. CPO Market Drivers and Restraints Analysis
  • Table 2. Key Data Centre Architecture Challenges Summary
  • Table 3. Key Data Centre Architecture Challenges Summary
  • Table 4. Form Factor Evolution and Density Comparison
  • Table 5. Optical Transceiver Power Consumption by Generation
  • Table 6. Technology Migration Decision Framework
  • Table 7. CPO vs. Pluggables Decision Matrix
  • Table 8. Semiconductor Packaging Interconnection Techniques Overview
  • Table 9. CPO Application Segmentation (Scale-Out vs. Scale-Up)
  • Table 10. EIC/PIC Integration Methods Comparison
  • Table 11. Integration Technology Selection Criteria
  • Table 12. Detailed Technical Comparison: 2D vs 2.5D vs 3D
  • Table 13. 3D Integration Sub-Categories Comparison
  • Table 14. Packaging Technology Benchmark for EIC/PIC Integration
  • Table 15. CPO Technology Challenges and Mitigation Strategies
  • Table 16. NVIDIA vs. Broadcom Strategic Positioning Comparison
  • Table 17. NVIDIA vs. Broadcom CPO Product Specifications Benchmark
  • Table 18. Server Boards, CPUs, and GPU/Accelerator Forecast (2026-2036)
  • Table 19. Optical I/O CPO Unit Shipment Forecast (2026-2036)
  • Table 20. Optical I/O CPO Revenue Forecast (2026-2036)
  • Table 21. CPO Network Switch Unit Shipment Forecast
  • Table 22. CPO Network Switch Revenue Forecast (2026-2036)
  • Table 23. Total CPO Market Size and Revenue (2026-2036)
  • Table 24. CPO Unit Shipments by Integration Technology
  • Table 25. Network Switch CPO Adoption by Packaging Technology
  • Table 26. Optical I/O Forecast by Packaging Technology
  • Table 27. PIC Design Segment - Key Players and Capabilities
  • Table 28. ASIC and xPU Design Segment - Key Players and CPO Integration Strategies
  • Table 29. Laser Sources Segment - Key Suppliers and Technologies
  • Table 30. SOI Wafer and Epi-Wafer Segment - Substrate Suppliers
  • Table 31. EIC, Retimers, SerDes, and PHY Segment - High-Speed Electronics Suppliers
  • Table 32. Connectors and Fibers Segment - Optical Infrastructure Suppliers
  • Table 33. Foundries Segment - Silicon Photonics and Advanced Packaging Capabilities
  • Table 34. Packaging, Assembling, and Testing Segment - OSAT and Test Equipment Providers
  • Table 35. System and Equipment Segment - OEMs and ODMs
  • Table 36. End Customers (Hyperscalers) Segment - Data Centre Operators and AI Leaders
  • Table 37. CPO Industrial Ecosystem Summary - Complete Value Chain Overview
  • Table 38. AI Model Parameter and Compute Growth (2018-2030)
  • Table 39. Global AI Training Compute Demand Growth
  • Table 40. AI Data Centre Requirements by Workload Type
  • Table 41. Switch Hierarchy in AI Data Centres
  • Table 42. Scale-Up vs. Scale-Out vs. Scale-Across Comparison Matrix
  • Table 43. SerDes Bandwidth Limitations and Power Consumption
  • Table 44. SerDes Bottleneck Solutions Comparison
  • Table 45. Pluggable Optics Architecture and Limitations
  • Table 46. Signal Loss Comparison: Pluggable vs. CPO (dB)
  • Table 47. Comprehensive Pluggable vs. CPO Comparison
  • Table 48. Design Decision Framework for CPO Adoption
  • Table 49. L2 Network Architecture Comparison
  • Table 50. Copper Wire Count in Current AI Systems
  • Table 51. Copper Interconnect Specifications by System
  • Table 52. Copper System Limitations Summary
  • Table 53. Copper vs. Optical Performance Benchmark
  • Table 54. Power Consumption by Interconnect Technology
  • Table 55. Power Consumption Component Breakdown: Pluggable vs. CPO (400G)
  • Table 56. Latency Benchmark Comparison
  • Table 57. PIC Component Overview
  • Table 58. PICs vs. Silicon Photonics Comparison
  • Table 59. Silicon Photonics vs. Other PIC Platforms: Capability Comparison
  • Table 60. PIC Advantages and Challenges Summary
  • Table 61. Optical Engine vs. Pluggable Transceiver Comparison
  • Table 62. External Laser Source Configurations
  • Table 63. CPO Technology Building Blocks
  • Table 64. CPO Technology Components and Suppliers
  • Table 65. Latency Comparison: Pluggable vs. CPO
  • Table 66. Data Rate Scaling: Pluggable vs. CPO
  • Table 67. CPO Value Proposition Summary
  • Table 68. CPO Technical Challenges and Mitigation Approaches
  • Table 69. OIF CPO Standards Development Timeline
  • Table 70. OIF CPO Framework Functional Partitioning
  • Table 71. OIF CPO Module Specifications by Generation
  • Table 72. ELSFP Implementation Agreement Key Specifications
  • Table 73. CPO Telemetry and Management Requirements
  • Table 74. OIF CEI Specifications for CPO Applications
  • Table 75. UCIe Specifications and CPO Relationship
  • Table 76. China CPO Standards Landscape
  • Table 77. CPO Component Packaging Requirements
  • Table 78. Switch CPO Package Specifications (Representative)
  • Table 79. 1.6 Tbps Optical Engine Performance
  • Table 80. XPU Optical I/O Requirements
  • Table 81. Advanced Optical I/O Integration Approaches
  • Table 82. Overview of CPO Packaging Technologies
  • Table 83. Semiconductor Packaging Technology Landscape
  • Table 84. Packaging Technology Comparison for CPO
  • Table 85. Advanced Packaging Performance Metrics
  • Table 86. Overview of Interconnection Techniques in Semiconductor Packaging
  • Table 87. Interconnection Technique Comparison for CPO
  • Table 88. Silicon Interposer vs. Silicon Bridge Comparison
  • Table 89. Silicon-Based 2.5D Packaging Options
  • Table 90. TSV Specifications by Application
  • Table 91. TSV Fabrication Process Steps
  • Table 92. TSV Technology Evolution
  • Table 93. TSV Challenges for CPO Applications
  • Table 94. TSV Technology Evolution
  • Table 95. 2.5D Silicon Packaging Development Trends
  • Table 96. Key Development Areas by Technology Node
  • Table 97. Interposer Size Evolution for CPO
  • Table 98. 2.5D Silicon Packaging Roadmap by Vendor
  • Table 99. Roadmap Milestones for CPO Integration
  • Table 100. Si Interposer vs. Si Bridge Comparison
  • Table 101. RDL Technology Specifications
  • Table 102. SiO2 vs. Organic Dielectric Comparison
  • Table 103. WLFO vs. PLFO Comparison
  • Table 104. Fan-Out Packaging Trends
  • Table 105. Fan-Out Process Challenges
  • Table 106. Glass Properties vs. Silicon and Organic
  • Table 107. Glass Applications in Semiconductor Packaging
  • Table 108. Glass Core Interposer Characteristics
  • Table 109. Glass vs. Silicon Interposer Comparison
  • Table 110. Glass Interposer Benefits for CPO
  • Table 111. Glass vs. Molding Compound Properties
  • Table 112. Glass Packaging Challenges and Solutions
  • Table 113. Bumping Technology Evolution
  • Table 114. Bump Scaling Challenges
  • Table 115. Micro-Bump Specifications and Applications
  • Table 116. Cu-Cu Hybrid Bonding Methods Comparison
  • Table 117. Hybrid Bonding Method Selection for CPO Applications
  • Table 118. Hybrid Bonding Manufacturing Challenges
  • Table 119. Hybrid Bonding Process Maturity by Pitch
  • Table 120. Critical Process Parameters for Hybrid Bonding
  • Table 121. Conventional EIC/PIC Integration Methods
  • Table 122. Conventional Method Advantages and Limitations Summary
  • Table 123. Emerging EIC/PIC Integration Methods
  • Table 124. 2D to 3D EIC/PIC Integration Options
  • Table 125. Technology Transition Drivers
  • Table 126. 2D to 3D Integration Evolution
  • Table 127. Integration Roadmap by CPO Segment
  • Table 128. EIC/PIC Packaging Technology Benchmark
  • Table 129. 2D EIC/PIC Integration Pros and Cons
  • Table 130. 2.5D EIC/PIC Integration Pros and Cons
  • Table 131. 3D Hybrid EIC/PIC Integration Pros and Cons
  • Table 132. 3D Monolithic EIC/PIC Integration Pros and Cons
  • Table 133. Benefits of TSV for PIC/EIC Integration
  • Table 134. TSV Fabrication Challenges in CPO
  • Table 135. Si Photonics Packaging Options Comparison
  • Table 136. 2.5D Si Interposer Pros and Cons for EIC/PIC
  • Table 137. FOPOP vs. WB Packaging Comparison
  • Table 138. Optical Engine Packaging Process Challenges
  • Table 139. Fan-Out EIC/PIC Integration Challenges
  • Table 140. Bond Pitch Scaling Challenges
  • Table 141. Co-Packaging vs. CPO Definition Comparison
  • Table 142. Future 3D-CPO Architecture Vision
  • Table 143. Architecture Evolution by Component
  • Table 144. 3D-CPO Integration Approaches
  • Table 145. Future 3D-CPO Packaging Structure Types
  • Table 146. Key Technology Milestones for Future 3D-CPO
  • Table 147. Performance Trajectory for Future 3D-CPO
  • Table 148. Thermal Management Evolution for 3D-CPO
  • Table 149. 3D-CPO Vision: NVIDIA Architecture Example
  • Table 150. CPO Assembly Process and Bottlenecks
  • Table 151. Coupler-FAU Interface Critical Dimensions
  • Table 152. Misalignment Loss Characterisation
  • Table 153. FAU-PIC Interface Stability Requirements
  • Table 154. Grating vs. Edge Coupler Comparison
  • Table 155. Grating vs. Edge Coupler Comparison
  • Table 156. Optical Alignment Challenges Overview
  • Table 157. Active vs. Passive Alignment Comparison
  • Table 158. Fiber Attach Methods Comparison
  • Table 159. FAU Supplier Landscape
  • Table 160. Alignment Structure Benchmark
  • Table 161. SENKO Key CPO Solutions
  • Table 162. Suppliers of Optical Components in CPO: Comprehensive Overview
  • Table 163. Laser Source Supplier Details
  • Table 164. On-Chip Laser Integration Approaches
  • Table 165. External Laser Configurations for CPO
  • Table 166. External Laser Suppliers
  • Table 167. Laser Attach Technology Comparison
  • Table 168. Comprehensive Laser Integration Benchmark
  • Table 169. Global CPO Market Forecast ($ Millions)
  • Table 170. Switch CPO Unit Volume Forecast (Thousands of Optical Engines)
  • Table 171. Switch CPO Market Forecast by Switch Generation ($M)
  • Table 172. CPO Cost Trajectory Projection
  • Table 173. XPU Optical I/O Market Forecast
  • Table 174. XPU Optical I/O Market Forecast by Platform ($M)
  • Table 175. CPO Cost Trajectory Projection
  • Table 176. Total Cost of Ownership Comparison (Per 51.2T Switch, 5-Year Lifetime)
  • Table 177. North America CPO Market Forecast
  • Table 178. Asia-Pacific CPO Market Forecast
  • Table 179. Europe CPO Market Forecast
  • Table 180. Rest of World CPO Market Forecast
  • Table 181. Global CPO Market Summary
  • Table 182. CPO Total Addressable Market Quantification
  • Table 183. CPO Serviceable Addressable Market
  • Table 184. CPO Component Market Forecast ($M)
  • Table 185. CPO Market by Optical Engine Generation ($M)
  • Table 186. Generation Share Evolution
  • Table 187. Manufacturing Yield Improvement Trajectory
  • Table 188. CPO Standards Development Timeline
  • Table 189. Market Restraints Summary
  • Table 190. CPO Adoption Curve by Segment (Penetration of Addressable Market)
  • Table 191. CPO Market Share by Participant (2024-2026)
  • Table 192. Near-Term Competitive Evolution
  • Table 193. Competitive Landscape Evolution Timeline
  • Table 194. Vertical Integration Trends by Participant Type
  • Table 195. Vertical Integration by Company
  • Table 196. Bull Case Market Forecast ($M)
  • Table 197. Base Case Market Forecast ($M)
  • Table 198. Bear Case Market Forecast ($M)
  • Table 199. Scenario Comparison Summary
  • Table 200. Global DATACOM Market Size and Growth
  • Table 201. DATACOM Market Growth Drivers
  • Table 202. Global Hyperscale Data Centre Capacity
  • Table 203. Edge Computing Market Growth
  • Table 204. DATACOM Technology Trends Summary
  • Table 205. Packaging Technology Evolution for DATACOM
  • Table 206. UCIe Specifications and Adoption Timeline
  • Table 207. Laser Source Technology Trends
  • Table 208. Laser Source Comparison for CPO
  • Table 209. Scale-Out CPO Market Forecast by Switch Bandwidth ($M)
  • Table 210. Scale-Out Technology Enablers by Generation
  • Table 211. Scale-Out CPO Competitive Landscape
  • Table 212. Scale-Up CPO Market Forecast by Platform ($M)
  • Table 213. Scale-Up CPO Market Forecast
  • Table 214. Scale-Up CPO Market Evolution Phases
  • Table 215. Scale-Up CPO Platform Comparison
  • Table 216. Scale-Up vs. Scale-Out CPO Comparison
  • Table 217. Scale-Up CPO Competitive Landscape
  • Table 218. CPO vs. High-Density Connector Adoption Scenarios
  • Table 219. OIF High-Density Connector Specifications (Proposed)
  • Table 220. Technology Comparison: CPO vs. High-Density Connector-Enabled Alternatives
  • Table 221. Scenario Impact by Market Segment
  • Table 222. High-Density Connector Development Roadmap vs. CPO Timeline
  • Table 223. Why High-Density Connectors Are Unlikely to Derail CPO
  • Table 224. Scenario Summary and Strategic Implications
  • Table 225. NVIDIA CPO Supply Chain Geographic Distribution
  • Table 226. Taiwan IC Industry Market Share Evolution (2021-2025)
  • Table 227. TSMC COUPE Platform Technical Specifications
  • Table 228. External Laser Source Suppliers for NVIDIA CPO

List of Figures

  • Figure 1. Anatomy of a Modern AI Data Centre
  • Figure 2. Network Switch Architecture in Data Centres
  • Figure 3. Switch IC Bandwidth Evolution Timeline (2015-2036)
  • Figure 4. Optical Transceiver Technology Migration Path (Pluggable -> Near-Package -> CPO)
  • Figure 5. Optical Engine Component Architecture
  • Figure 6. Co-Packaged Optics 1.0: Typical Integration Flow
  • Figure 7. Heterogeneous Integration Concept Diagram
  • Figure 8. Evolution from 2D to 2.5D to 3D Integration
  • Figure 9. Integration Technology Progression Roadmap
  • Figure 10. Optical I/O CPO Unit Shipment Forecast (2026-2036)
  • Figure 11. Optical I/O CPO Revenue Forecast (2026-2036)
  • Figure 12. CPO Network Switch Unit Shipment Forecast
  • Figure 13. CPO Network Switch Revenue Forecast (2026-2036)
  • Figure 14. Total CPO Market Size and Revenue (2026-2036)
  • Figure 15. CPO Unit Shipments by Integration Technology
  • Figure 16. Switch ASIC with pluggable optics versus co-packaged optics
  • Figure 17. LLM Parameter Growth Timeline (GPT-1 to GPT-5 and Beyond)
  • Figure 18. DGX H100/H200system topology
  • Figure 19. NVIDIA Rubin Architecture Overview
  • Figure 20. Scale-Up Network Topology (NVLink, NVSwitch)
  • Figure 21. Scale-Out and Scale-Up Network Topology (Ethernet/InfiniBand)
  • Figure 22. Three-Tier Network Architecture Diagram
  • Figure 23. Interconnect Technology Roadmap (2020-2036)
  • Figure 24. On-Board Optics Configuration
  • Figure 25. Switch ASIC Bandwidth Scaling (51.2T -> 102.4T -> 204.8T)
  • Figure 26. Copper-to-Optical Migration Roadmap
  • Figure 27. Current AI System Interconnect Architecture
  • Figure 28. AI Architecture Evolution (2026-2030)
  • Figure 29. AI Architecture Vision (2031-2036)
  • Figure 30. PIC Architecture for CPO Applications
  • Figure 31. CPO Key Concepts Illustration
  • Figure 32. Power Consumption Comparison (pJ/bit Roadmap)
  • Figure 33. Optical I/O Packaging for XPUs
  • Figure 34. Schematic view of three optically enabled data center platforms (LightningValley2, ThunderValley and Pegasus) and the Aurora test and measurement platform contained within the Nexus rack, which allows intra-rack and inter-rack connectivity betwee
  • Figure 35. Semiconductor Packaging Evolution Timeline
  • Figure 36. 2.5D Packaging Structure Diagram
  • Figure 37. 2.5D Si-Based Packaging Roadmap
  • Figure 38. EMIB implementation (silicon bridge)
  • Figure 39. FPGA + HBM in 2.5D package with interposer
  • Figure 40. RDL Fabrication Process Flow
  • Figure 41. Panel-Level Fan-Out Process
  • Figure 42. Wafer-Level Fan-Out Process
  • Figure 43. Glass Core Interposer Structure
  • Figure 44. Glass Interposer Manufacturing Process Flow
  • Figure 45. (a) Switch composed of 2.5D advanced packaging; (b) TMV-based, (c) TSV-based, and (d) TGV-based advanced packaging architectures
  • Figure 46. ASE Fan-Out CPO Solution
  • Figure 47. ASE FOPOP Process Flow
  • Figure 48. SPIL's Fan-Out Embedded Bridge (FOEB) Structure for PIC/EIC Integration in CPO
  • Figure 49. FOEB Integration Process Flow
  • Figure 50. TSMC Optical Engine Roadmap
  • Figure 51. TSMC iOIS Architecture
  • Figure 52. (a) TSMC-SoIC face-to-face (F"F) technology for EIC and PIC bonding. (b) COUPE critical components consist of TSMC-SoIC bond, TDC, embedded micro-lens and metal reflector
  • Figure 53. Bond Pitch Scaling Roadmap
  • Figure 54.Scale-Up Optical I/O Technology Roadmap
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!