Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1131731

Cover Image

PUBLISHER: Future Markets, Inc. | PRODUCT CODE: 1131731

The Global Market for Anti-Fog Coatings and Films 2023-2033

PUBLISHED:
PAGES: 103 Pages, 25 Tables, 26 Figures
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 903

Add to Cart

Fog formation on surfaces is a major problem in optical systems, such as the lenses and mirrors found in glasses, swimming goggles, camera lenses, binoculars, etc. This undesirable phenomenon reduces the effectiveness of light transmittance and therefore the optical surface and material efficiency. The utilization of advanced surface coating technologies can be used to address a wide variety of these problems.

Examples include:

  • Cleaning optical surfaces is time consuming, expensive, or impossible.
  • Fingerprints negatively impact the performance of optics.
  • Functional issues due to liquid behaviour on surfaces.
  • Contamination and fouling materials negatively impact optical behaviour.
  • Improved adhesive/bonding characteristics are desired on optical surfaces.
  • Surface is not lubricous enough.
  • Wettability of an optical surface is not ideal.
  • Fogging & moisture build up negatively impact optical performance.

Anti-fog coatings are also known as non-mist coatings and their use have grown in use in eyewear and headgear in the last few years. Fogging by moisture condensation on transparent substrates presents a major challenge in several optical applications that require excellent light transmission characteristics, such as eyeglasses and vehicle windshields, and can lead to serious hazards involving in blurred vision, light scattering, energy consumption and safety hazard during the usage process of transparent glass and plastics. These problems limit the uses of transparent polymeric materials. Anti-fogging additives are also widely used in food packaging films.

Their development has accelerated though breakthroughs in the use of inorganic materials such as TiO2, or SiO2, polymers containing polar functions such as hydroxyl (OH), carboxyl (COOH), and ester groups (COOR),and the textured or porous surfaces.

Applications that benefit from anti-fog treatments include:

  • eyewear (e.g., safety goggles, face shields).
  • optical instruments (e.g., cameras, microscopes, endoscopic instruments).
  • externally located gauges and signs.
  • food packaging.
  • visors or sport goggles.
  • display screens (e.g., computer monitors, mobile device displays).
  • military helmets.
  • photovoltaic modules.
  • car windshields and lamp casings.

There are two main types of anti-fog coatings:

  • Hydrophobic and superhydrophobic coatings that repel water, making it bead and run off of the lens.
  • Hydrophilic and superhydrophilic coatings that form a thin coating of water over the lens.

Combinations of both have also been developed.

Report contents include:

  • Anti-fog coatings technology assessment.
  • Global revenues for anti-fog coatings and films 2019-2033, by market.
  • Market challenges.
  • Market drivers and trends in anti-fog coatings and films.
  • Markets for anti-fog coatings and films including Automotive, solar panels, healthcare and medicine, display devices and eyewear (optics), food packaging and agricultural films.
  • 39 Company profiles. Companies profiled include Aculon, Inc., Akzo Nobel, Clariant AG, Daikin Industries, Ltd., Hydromer, Inc, Nano-Care Deutschland AG, Natoco Co., Ltd., NEI Corporation and many more.

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

  • 1.1. Aims and objectives of the study
  • 1.2. Technology Readiness Level (TRL)

2. EXECUTIVE SUMMARY

  • 2.1. Why anti-fog coatings?
  • 2.2. Advantages over traditional coatings
  • 2.3. Market drivers and trends
  • 2.4. End user market for anti-fog coatings
  • 2.5. Global revenues for anti-fog coatings and films 2019-2033
  • 2.6. Market challenges

3. OVERVIEW OF ANTI-FOG COATINGS

  • 3.1. Properties
  • 3.2. Production and synthesis methods
    • 3.2.1. Film coatings techniques analysis
    • 3.2.2. Superhydrophobic coatings on substrates
    • 3.2.3. Electrospray and electrospinning
    • 3.2.4. Chemical and electrochemical deposition
      • 3.2.4.1. Chemical vapor deposition (CVD)
      • 3.2.4.2. Physical vapor deposition (PVD)
      • 3.2.4.3. Atomic layer deposition (ALD)
      • 3.2.4.4. Aerosol coating
      • 3.2.4.5. Layer-by-layer Self-assembly (LBL)
      • 3.2.4.6. Sol-gel process
      • 3.2.4.7. Etching
  • 3.3. Methods for producing anti-fog coatings
  • 3.4. Types of anti-fog coatings
    • 3.4.1. Hydrophilic coatings
      • 3.4.1.1. Superhydrophilic anti-fogging
    • 3.4.2. Hydrophobic and superhydrophobic coatings and surfaces
      • 3.4.2.1. Hydrophobic coatings
      • 3.4.2.2. Superhydrophobic
    • 3.4.3. Oleophobic coatings and surfaces
      • 3.4.3.1. SLIPS
      • 3.4.3.2. Applications
      • 3.4.3.3. Hydrophilic/oleophobic anti-fogging
    • 3.4.4. Zwitterionic polymers
    • 3.4.5. Biomimetic anti-fogging materials
    • 3.4.6. Cellulose nanocrystals
      • 3.4.6.1. Synthesis
      • 3.4.6.2. Properties
      • 3.4.6.3. Anti-fog CNCs

4. MARKETS FOR ANTI-FOG COATINGS AND FILMS

  • 4.1. Automotive
  • 4.2. Solar panels
  • 4.3. Healthcare and medical
  • 4.4. Display devices and eyewear (optics)
  • 4.5. Food packaging and agricultural films

5. ANTI-FOG COATINGS AND FILMS COMPANY PROFILES (39 company profiles)

6. REFERENCES

TABLES

  • Table 1. Technology Readiness Level (TRL) Examples
  • Table 2. Types of anti-fog solutions
  • Table 3. Market drivers and trends in anti-fog coatings
  • Table 4. Applications of anti-fog coatings
  • Table 5. Global revenues for anti-fog coatings and films, 2019-2033, millions USD, by market
  • Table 6. Market and technical challenges for anti-fog coatings
  • Table 7. Film coatings techniques
  • Table 8. Techniques for constructing superhydrophobic coatings on substrates
  • Table 9. Typical surfaces with superwettability used in anti-fogging
  • Table 10. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces
  • Table 11. Disadvantages of commonly utilized superhydrophobic coating methods
  • Table 12. Applications of oleophobic & omniphobic coatings
  • Table 13. Types of biomimetic materials and properties
  • Table 14. Synthesis methods for cellulose nanocrystals (CNC)
  • Table 15. CNC sources, size and yield
  • Table 16. CNC properties
  • Table 17. Mechanical properties of CNC and other reinforcement materials
  • Table 18. Market overview of anti-fog coatings in automotive
  • Table 19. Market overview of anti-fog coatings in solar panels
  • Table 20. Market overview of anti-fog coatings in healthcare and medical
  • Table 21. Market overview of anti-fog coatings in display devices and eyewear (optics)
  • Table 22. Market overview of anti-fog coatings in food packaging and agricultural films
  • Table 23. Akzo Nobel Armofog products
  • Table 24. Natoco anti-fog coating properties
  • Table 25. Film properties of MODIPER H

FIGURES

  • Figure 1. Anti-fog goggles
  • Figure 2. Global revenues for anti-fog coatings, 2019-2033, by market
  • Figure 3. Nanocoatings synthesis techniques
  • Figure 4. Electrospray deposition
  • Figure 5. CVD technique
  • Figure 6. Schematic of ALD
  • Figure 7. SEM images of different layers of TiO2 nanoparticles in steel surface
  • Figure 8. The coating system is applied to the surface. The solvent evaporates
  • Figure 9. A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional
  • Figure 10. During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic
  • Figure 11. Hydrophilic effect
  • Figure 12. Anti-fogging nanocoatings on protective eyewear
  • Figure 13. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°
  • Figure 14. Contact angle on superhydrophobic coated surface
  • Figure 15. SLIPS repellent coatings
  • Figure 16. Omniphobic coatings
  • Figure 17. Superhydrophilic zwitterionic polymer brushes
  • Figure 18. TEM image of cellulose nanocrystals
  • Figure 19. CNC preparation
  • Figure 20. Extracting CNC from trees
  • Figure 21. FogKicker products
  • Figure 22. Face shield with anti-fog coating
  • Figure 23. Works TT 5 helmet with anti-fog coating
  • Figure 24. Bostik anti-fog films
  • Figure 25. NANOMYTE® SAF-100 coated polycarbonate resists fogging over hot water (left) and upon being removed from a freezer (right)
  • Figure 26. Schematic of MODOPER H series Anti-fog agents
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!