PUBLISHER: Frost & Sullivan | PRODUCT CODE: 1883961
PUBLISHER: Frost & Sullivan | PRODUCT CODE: 1883961
Software-defined Trucks are Experiencing Transformational Growth due to Electrification and Connectivity
Software-defined trucks are vehicles designed with hardware-software layers that decouple the capabilities of the vehicle, thus allowing for updates to vehicle features, fleet management, and cloud-based analytics, as well as over-the-air software updates from one or several domains. Rather than being composed of fixed hardware mechanisms with little or no room for upgrades, software-defined trucks have the potential to support ongoing improvements in functionality for vehicles, adaptive mechanisms, and lifecycle flexibility. Software-defined trucks represent a new approach in the engineering of commercial vehicles, where base functionality can be managed and modified through modular software instead of fixed hardware configurations.
Frost & Sullivan presents a feasibility study on the architecture, operations, and economics of transitioning from hardware-defined to software-defined trucks. The report examines implementations of software-defined approaches in the industry, highlights the current software platforms, and explores the enablers for a software-defined ecosystem, such as enhanced crash avoidance features and a shift to centralized computing systems. It also examines challenges associated with software-defined trucks, like cost, security, and privacy concerns. The study further examines continued implications for original equipment manufacturers (OEMs), Tier I suppliers, and fleets as they cultivate their development life cycles from a hardware-based to a tailored software-defined cycle.
Transformative Megatrends
Why
Frost Perspective
Disruptive Technologies
Why
Frost Perspective
Internal Challenges
Why
Frost Perspective
Growth Drivers
Centralized Compute Architectures
The shift from multiple distributed electronic control units (ECUs) to a centralized computing platform is the foundation of Software-Defined Trucks. With centralization, computing resources can be pooled to process larger data sets more quickly, unlock the benefits of simpler software upgrades and releases, and allow for a broader range of features to be integrated. Original equipment manufacturers (OEMs) are developing scalable, modular architectures to support the long-term viability of vehicle platforms.
Better Crash Avoidance
Truck driving, particularly long-haul truck driving, is an extremely demanding job because of the long and continuous operating hours that cause driver fatigue, oversight, or delayed responses in emergencies. Crash avoidance technologies enable OEMs to achieve higher safety levels, particularly for trucks, as they are the vehicle type involved in a majority of road fatalities.
Regulatory Push
To reduce fatality rates and enhance vehicle safety, European regulators will push initiatives to make some advanced driver assistance system (ADAS) functions and safety features, such as the automatic emergency braking system (AEBS) and lane-departure warning (LDW), mandatory. Policy guidelines for the adoption of advanced ADAS functions will guide market participants in introducing features in future truck platforms.
Sensor Suite Development
Developments in vision enhancement and sensor suite technologies will make ADAS more reliable than previous generations.
Growth Restraints