PUBLISHER: Grand View Research | PRODUCT CODE: 1772509
PUBLISHER: Grand View Research | PRODUCT CODE: 1772509
The U.S. aerospace testing market size was estimated at USD 1,585.8 million in 2024 and is projected to reach USD 2,167.4 million by 2033, growing at a CAGR of 3.6% from 2025 to 2033. The U.S. Aerospace Testing market is growing due to the increasing use of remote inspection and digital twin technologies. These tools create virtual models of aircraft and systems, allowing for detailed analysis without physical access. High-resolution imaging and data integration improve the accuracy of defect detection. This reduces the need for on-site inspection teams, cutting operational costs.
Extended reality applications support virtual assessments across geographically dispersed fleets. Together, these advancements enable faster, more efficient, and data-driven maintenance and testing processes. Companies are now using these technologies to make aerospace inspection and maintenance more efficient. For instance, in April 2025, Gecko Robotics, Inc., a U.S.-based AI and robotics company, and L3Harris Technologies, Inc. partnered to develop an extended reality (XR) solution that creates high-resolution digital twins of aircraft for remote maintenance and defect detection. This partnership enhances inspection accuracy, reduces operational costs, and supports the modernization of military aircraft through advanced virtual assessment tools.
Next-generation display system testing is becoming increasingly important in the U.S. aerospace testing market. As aircraft manufacturers integrate advanced digital cockpit displays, testing requirements are evolving to match the complexity of these systems. This trend is closely tied to real-world product development, with testing driven by specific instances of display integration and prototyping. New display systems often rely on high-performance processors and require validation across multiple performance parameters. Several aerospace technology developers are actively working on large-area and high-resolution displays, increasing the need for rigorous and continuous testing protocols. For instance, in January 2025, Honeywell International Inc. and NXP Semiconductors, a semiconductor company, expanded their partnership to accelerate the development of next-generation aviation technologies, including AI-driven avionics, large-area cockpit displays, and autonomous flight capabilities. The partnership utilizes NXP's high-performance processors and Honeywell's Anthem system to enhance safety, efficiency, and long-term value in both traditional and electric aircraft.
Electric and eVTOL aircraft testing is gaining momentum in the U.S. aerospace testing market as companies accelerate development of next-generation air mobility solutions. With increased focus on electric propulsion and vertical takeoff and landing systems, testing now emphasizes powertrain performance, flight control stability, and integrated system validation. These aircraft require rigorous evaluation of battery systems, thermal management, noise levels, and flight autonomy. Testing protocols are adapting to address both urban and regional flight profiles, where efficiency, safety, and regulatory compliance are critical. The transition toward electric aviation is instance-driven, with real-time prototyping pushing the demand for customized test environments. Several developers are actively progressing electric and eVTOL platforms, expanding the scope and intensity of testing operations.
U.S. Aerospace Testing Market Report Segmentation
This report offers revenue growth forecasts at the country level and provides an analysis of the latest industry trends in each of the sub-segments from 2021 to 2033. For this study, Grand View Research has segmented the U.S. aerospace testing market report based on testing type, application, aviation type, and end use: