PUBLISHER: IMARC | PRODUCT CODE: 1831867
PUBLISHER: IMARC | PRODUCT CODE: 1831867
The global aerospace robotics market size reached USD 3.8 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 8.4 Billion by 2033, exhibiting a growth rate (CAGR) of 8.79% during 2025-2033.
Aerospace robotics refers to the robots used for the assembly and maintenance of aircraft, satellites and space shuttles. They are commonly used for executing sensitive tasks, such as material handling, cutting, riveting, bolting, welding and fabrication of exterior and interior components of the aircraft. They are also utilized for detecting minute variations in the thickness, patency and integrity of aircraft skins, airfoils and paint coatings. Aerospace robotics usually operate through articulated, cartesian, cylindrical, spherical, parallel and selective compliance articulated robot arm (SCARA) technologies. In comparison to the traditionally used manual systems, aerospace robotics solutions can perform repeated tasks with enhanced accuracy and offer consistent and speedy results. Space robotics also find extensive application for autonomously operating on new planetary surfaces.
Significant growth in the aerospace and aviation industries across the globe is one of the key factors creating a positive outlook for the market. Moreover, the increasing requirement for automating various labor-intensive inspection, fiber placement, sealing and dispensing processes is providing a thrust to the market growth. In line with this, the widespread production of narrow-body aircraft with lightweight and small-sized components is providing a thrust to the growth of the market. Various technological advancements, such as the integration of robotics with 3D visualization, Internet of Things (IoT), artificial intelligence (AI) and cloud computing solutions, are acting as other growth-inducing factors. These technologies aid in improving human-robot collaboration and minimizing the turnaround time for the manufacturing processes. Other factors, including extensive research and development (R&D) activities, along with significant improvements in the cyber-physical system (CPS) with automated decision-making functionalities, are anticipated to drive the market toward growth.
The competitive landscape of the industry has also been examined along with the profiles of the key players being ABB Ltd., Electroimpact Inc., FANUC Corporation, General Electric Company, Gudel Group AG, JH Robotics Inc., Kawasaki Heavy Industries Ltd., KUKA AG (Midea Group), Mitsubishi Electric Corporation, Teradyne Inc. and Yaskawa Electric Corporation.