Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1847830

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1847830

Space Propulsion Market by Propulsion Type, Vehicle Type, Application, End User - Global Forecast 2025-2032

PUBLISHED:
PAGES: 189 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Space Propulsion Market is projected to grow by USD 37.66 billion at a CAGR of 16.75% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 10.90 billion
Estimated Year [2025] USD 12.72 billion
Forecast Year [2032] USD 37.66 billion
CAGR (%) 16.75%

A strategic orientation to propulsion technology evolution framing the technical, programmatic, and policy drivers that shape mission and procurement choices

The propulsion domain sits at the intersection of engineering rigor, commercial ambition, and evolving policy, making it a critical focal point for any organization operating in space. Rapid advances in propulsion architectures, materials science, and power systems are enabling new mission profiles while simultaneously reshaping risk, cost, and timeline calculus. Against this backdrop, technical maturity, supply chain resilience, and regulatory alignment emerge as the three central axes that determine competitive advantage.

Leaders must synthesize cross-disciplinary evidence to evaluate trade-offs between propulsion options, lifecycle logistics, and mission intent. Chemical propulsion continues to deliver high-thrust solutions essential for launch and large orbital transfers, whereas electric propulsion is unlocking extended mission durations and more efficient stationkeeping for a wide spectrum of satellites. Hybrid approaches are gaining attention where mission profiles demand both rapid delta-v and long-duration efficiency. These technology choices interact with vehicle architectures and application demands to define procurement priorities, crew safety envelopes, and mission resiliency strategies.

Consequently, a strategic orientation that integrates technical performance, programmatic risk, and geopolitical realities is indispensable. This report begins by orienting decision-makers to the core forces reshaping propulsion selection and program execution, provides evidence-based segmentation to clarify where value accrues, and highlights the practical levers that executives can pull to align capabilities with objectives. The introduction establishes the analytical lens used throughout: comparative technical assessment, supply-chain mapping, regulatory sensitivity, and mission-centric performance.

Emerging technology diffusion, changing industry structure, and shifting program priorities that are redefining propulsion development pathways and supplier strategies

The propulsion landscape is experiencing a set of transformative shifts that are fundamentally altering how missions are conceived, funded, and executed. Technology diffusion is accelerating: electric propulsion systems have matured from niche mission enablers to mainstream options for stationkeeping and transfer maneuvers, while advanced chemical- and hybrid-thrust systems are being iteratively optimized for reduced footprint and improved reusability. This technological momentum is further amplified by improved power generation, thermal management, and additive manufacturing, each enabling more compact, reliable, and cost-effective propulsion subsystems.

Simultaneously, industry structure is changing. A two-track dynamic has emerged in which established prime contractors scale integrated program offerings while agile new entrants focus on modular, software-defined propulsion suites. This bifurcation encourages specialization and strategic partnerships, which in turn compresses development cycles and expands the set of viable mission architectures. On the policy and regulatory front, export controls, on-orbit safety standards, and national security priorities are becoming more prominent determinants of supplier selection and program timelines.

Moreover, demand-side evolution is driving new performance priorities. Commercial constellations emphasize reliability, mass efficiency, and lifecycle operating cost, whereas deep space and crewed missions assign higher value to redundancy, high-thrust capability, and safety certification. As a result, propulsion investment decisions increasingly balance immediate mission economics with longer-term platform flexibility. Taken together, these shifts require leaders to adopt adaptive roadmaps that accommodate rapid technological change while preserving mission assurance and supply chain integrity.

How 2025 tariff measures reshaped procurement pathways, supplier dynamics, and resilience planning across the propulsion supply chain

Tariff actions introduced by the United States in 2025 have introduced an additional layer of complexity to procurement and supply-chain planning for propulsion systems and associated components. The immediate effect has been to raise the effective cost of certain imported subsystems and raw materials, prompting program managers to reassess sourcing decisions and to explore mitigation strategies such as nearshoring, supplier qualification of alternate vendors, and reconfiguration of bill-of-materials for long-lead items. Because propulsion components often rely on specialized alloys, precision-machined parts, and electronic controls sourced globally, tariffs can produce asymmetric cost impacts across the value chain.

Beyond procurement cost increases, tariffs have influenced supplier negotiation dynamics and contractual structures. Prime contractors and integrators are reallocating risk through longer lead contracts, hedged pricing mechanisms, and increased inventory for critical spares. At the same time, some suppliers have accelerated investment in domestic production capacity or sought tariff-exempt manufacturing routes where policy provisions permit. These shifts are altering the cadence of qualification and the timeline for certification of critical subsystems because new supply relationships require additional testing and traceability documentation.

Strategically, tariffs have heightened the salience of supply-chain visibility and dual-sourcing strategies. Organizations are placing greater emphasis on supplier audits, alternative logistics pathways, and scenario planning to preserve program continuity. In the medium term, policy-driven incentives for domestic industrial capability may spur localized innovation and increase resilience, but these transitions will require targeted capital, workforce development, and regulatory coordination to be effective. Ultimately, tariffs have underscored that propulsion procurement is not solely an engineering exercise but a socio-technical challenge that integrates economic policy with mission risk management.

A layered segmentation framework linking propulsion type, vehicle architecture, mission application, and end-user priorities to strategic investment choices and performance trade-offs

A disciplined segmentation framework clarifies where technological advantages translate into operational value and where investment will yield differentiated outcomes. Based on Propulsion Type, market is studied across Chemical Propulsion, Electric Propulsion, and Hybrid Propulsion. This classification highlights performance envelopes and lifecycle trade-offs: chemical systems provide high instantaneous thrust suitable for launch and rapid transfers, electric systems optimize propellant efficiency for stationkeeping and long-duration maneuvers, and hybrid concepts bridge operational flexibility and energy efficiency.

Understanding vehicle context is equally important because propulsion demands vary with platform class. Based on Vehicle Type, market is studied across Crewed Missions, Deep Space Missions, Launch Vehicle, and Satellite Platform. The Satellite Platform is further studied across Communication Satellite, Earth Observation Satellite, Navigation Satellite, Scientific Satellite, and Small Satellite. The Small Satellite is further studied across CubeSat, MicroSat, NanoSat, and PicoSat. These distinctions reveal how mass, mission duration, safety requirements, and redundancy profiles drive propulsion choices: crewed missions emphasize certified, redundant high-thrust systems; deep space missions prioritize endurance and autonomy; launch vehicles require scalable high-thrust architectures; and satellite platforms prioritize compact, efficient, and reliable subsystems adapted to mission duration and size class.

Mission application exerts direct influence on propulsion selection and operational doctrine. Based on Application, market is studied across Deorbit, Orbit Raising, Station Keeping, and Transfer Maneuvers. Each application imposes distinct delta-v budgets, duty cycles, and lifetime expectations that map to specific propulsion technologies and propellant chemistries. Finally, user context shapes procurement cadence and performance expectations. Based on End User, market is studied across Commercial, Government, Military, and Research Institution. Commercial operators frequently prioritize cost-effectiveness and rapid deployment, whereas government and military applications emphasize certification, security, and mission assurance, and research institutions prioritize experimental flexibility. Integrating these segmentation layers enables targeted strategy development and clearer prioritization of R&D and procurement dollars.

Regional contrasts in industrial capacity, regulatory emphasis, and procurement behavior that determine where propulsion capabilities are developed and deployed

Regional dynamics materially shape technology adoption, supply chain configuration, and regulatory posture across propulsion ecosystems. In the Americas, innovation ecosystems driven by private launch providers, established defense primes, and a growing supplier base foster accelerated adoption of electric propulsion for commercial constellations, alongside ongoing investments in high-thrust reusable launch technologies. Policy emphasis on domestic industrial capacity and export controls influences supplier selection and incentivizes localized manufacturing capabilities, which in turn affects program timelines and sourcing strategies.

In Europe, Middle East & Africa, a mix of sovereign programs, multinational industrial consortia, and burgeoning commercial ventures is creating demand for modular and interoperable propulsion subsystems. Collaborative procurement practices and stringent safety standards guide technology qualification, while regional initiatives that promote cross-border supply chains encourage specialization in niche components, such as high-precision valves and specific propellant management systems. Regulatory coordination across jurisdictions emphasizes space sustainability, deorbit capability, and interoperability standards that impact propulsion design requirements.

Asia-Pacific presents a highly dynamic environment characterized by rapid capacity expansion, large government-led programs, and an increasing number of commercial entrants focusing on small satellites and launch services. Investments in domestic manufacturing, combined with targeted industrial policy, have accelerated capability maturation in propulsion electronics, additive manufacturing, and composite structures. Consequently, regional competition and cooperation both influence component costs, supplier diversification strategies, and the pace at which new propulsion concepts are fielded. Taken together, these regional distinctions inform where to prioritize partnerships, manufacturing footprints, and regulatory engagement to support resilient program execution.

Competitive strategies and capability convergence among primes, specialized vendors, and agile new entrants that are shaping propulsion productization and service models

Key industry participants are pursuing a mix of vertical integration, strategic partnerships, and targeted specialization to capture value in a rapidly evolving propulsion ecosystem. Legacy prime contractors continue to leverage systems-integration strengths and deep qualification expertise to serve crewed and deep space programs, while specialist propulsion firms and startups emphasize rapid iteration, modularity, and cost-effective production for commercial satellite operators. Many incumbents are adopting hybrid business models that combine in-house development with supplier ecosystems to accelerate time-to-orbit while preserving technical oversight.

Technology-focused entrants are differentiating through innovations in power electronics for electric propulsion, novel propellant chemistries, and advanced manufacturing techniques such as additive production of combustion chambers and tanks. These capabilities lower unit costs and shorten development cycles, enabling new vendors to compete for constellations and secondary payload opportunities. Strategic partnerships between propulsion specialists and avionics or thermal-control firms are becoming common, enabling integrated subsystem solutions that reduce integration risk and speed qualification.

From a commercial standpoint, companies are increasingly bundling propulsion hardware with lifecycle services such as on-orbit propulsion-as-a-service, in-orbit refueling readiness, and end-of-life deorbit solutions. This shift aligns incentives across suppliers and operators to maximize asset longevity and mission flexibility. On the M&A front, the pursuit of complementary capabilities-such as control electronics, propellant-handling expertise, or manufacturing scale-remains a key strategic lever to accelerate capability delivery and expand addressable mission sets. Overall, the competitive landscape rewards both engineering excellence and disciplined program execution.

Actionable strategic steps for leaders to strengthen modularity, supply resilience, lifecycle services, and regulatory engagement across propulsion programs

Industry leaders should adopt a multi-pronged approach that combines technical rigor, supply-chain resilience, and strategic partnering to capture the emerging opportunities in propulsion. First, prioritize modular architectures that enable incremental upgrades: designing propulsion subsystems with standardized interfaces allows rapid substitution of improved thrusters or power electronics without full platform redesign. This approach reduces obsolescence risk and aligns development cycles with commercial cadence.

Second, pursue diversified sourcing strategies and invest in supplier development programs. Dual-sourcing critical components, qualifying regional suppliers, and supporting supplier capacity building will reduce program risk and attenuate tariff-induced volatility. Where feasible, create regional manufacturing hubs that balance cost, proximity to key customers, and regulatory compliance to shorten lead times and improve traceability.

Third, anchor partnerships around lifecycle services. Offering propulsion hardware in concert with propellant provisioning, on-orbit maintenance readiness, and deorbit planning creates recurring revenue streams and strengthens customer lock-in. Such service-oriented models also incentivize performance monitoring and predictive maintenance programs that enhance asset uptime.

Fourth, align R&D spend with mission-driven performance metrics rather than purely technology-driven goals. Invest in technologies that demonstrably reduce operational costs, improve safety margins for crewed missions, or extend satellite lifetimes. Finally, engage proactively with regulators and standards bodies to shape export, safety, and sustainability frameworks in ways that preserve operational flexibility while meeting national security and environmental objectives. Collectively, these actions will position organizations to respond decisively to technological shifts and policy changes.

A rigorous mixed-methods research design combining expert interviews, technical literature synthesis, supply-chain mapping, and scenario analysis to validate findings

This analysis synthesizes a mixed-methods research approach that combines primary engagement with subject-matter experts, rigorous technical literature review, and systematic supply-chain mapping. Primary inputs included structured interviews with propulsion engineers, program managers, procurement leads, and regulatory officials, supplemented by workshops that facilitated cross-stakeholder scenario testing. These engagements provided first-hand insights into qualification timelines, integration challenges, and operational priorities across mission classes.

Secondary sources encompassed peer-reviewed journals, conference proceedings, patent filings, and standards documentation to ensure robustness in technical assessment and to capture emergent trends in propellant chemistry, thruster design, and manufacturing processes. Supply-chain mapping employed bill-of-materials analysis, supplier capability assessments, and logistics pathway evaluation to identify single points of failure and opportunities for redundancy. Policy implications were assessed through review of public policy announcements, trade measures, and export-control frameworks that affect cross-border procurement.

Analytical techniques included comparative performance modeling to align propulsion choices with mission delta-v and duty cycles, risk-adjusted scenario analysis to explore tariff and geopolitical contingencies, and investment-readiness assessments to evaluate the maturity and scalability of key technologies. Throughout, findings were triangulated to ensure consistency across qualitative and quantitative inputs, and uncertainties were explicitly characterized to support decision-makers in applying the results to program-level choices.

Integrating technical performance, procurement resilience, and policy awareness to convert propulsion innovation into durable mission advantage

Propulsion is the connective tissue between mission ambition and operational reality, and the industry is at an inflection point driven by technology maturation, new business models, and shifting policy landscapes. Advances in electric and hybrid propulsion expand the envelope of feasible missions, while continued innovation in chemical systems preserves the performance cornerstone required for certain high-thrust applications. Concurrently, supply-chain dynamics and regulatory interventions are reshaping procurement strategy and necessitating greater emphasis on resilience and local capability.

For decision-makers, the implication is clear: strategic clarity arises from integrating technical performance, mission application, and geopolitical context into procurement and R&D choices. Organizations that embrace modularity, diversify sourcing, and anchor offerings in lifecycle services will be best positioned to capture operational value and to respond to policy-induced disruptions. Equally, proactive regulatory engagement and investment in supplier capacity form the backbone of a resilient propulsion strategy.

In closing, the propulsion sector rewards disciplined execution as much as technical ingenuity. The choices made today about architecture, supplier relationships, and regional footprints will dictate program agility and mission success in the coming decade. Executives who align engineering priorities with pragmatic supply-chain and policy strategies will secure durable advantages as the industry continues to evolve.

Product Code: MRR-4F4C36263844

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of reusable rocket engines with rapid turn around and refurbishment processes for commercial launch services
  • 5.2. Advancement of electric propulsion systems with high specific impulse for deep space exploration missions
  • 5.3. Development of green propellant technologies to reduce launch emissions and meet environmental regulations
  • 5.4. Emergence of AI driven thrust vector control systems optimizing in flight performance for small satellites
  • 5.5. Adoption of additive manufacturing for complex propulsion components reducing cost and production time
  • 5.6. Collaboration between government agencies and private firms for nuclear thermal propulsion demonstration missions
  • 5.7. Scaling of hybrid rocket motor technology for suborbital tourism applications with enhanced safety protocols
  • 5.8. Integration of microwave electrothermal thrusters for in orbit satellite station keeping and debris mitigation operations

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Space Propulsion Market, by Propulsion Type

  • 8.1. Chemical Propulsion
  • 8.2. Electric Propulsion
  • 8.3. Hybrid Propulsion

9. Space Propulsion Market, by Vehicle Type

  • 9.1. Crewed Missions
  • 9.2. Deep Space Missions
  • 9.3. Launch Vehicle
  • 9.4. Satellite Platform
    • 9.4.1. Communication Satellite
    • 9.4.2. Earth Observation Satellite
    • 9.4.3. Navigation Satellite
    • 9.4.4. Scientific Satellite
    • 9.4.5. Small Satellite
      • 9.4.5.1. CubeSat
      • 9.4.5.2. MicroSat
      • 9.4.5.3. NanoSat
      • 9.4.5.4. PicoSat

10. Space Propulsion Market, by Application

  • 10.1. Deorbit
  • 10.2. Orbit Raising
  • 10.3. Station Keeping
  • 10.4. Transfer Maneuvers

11. Space Propulsion Market, by End User

  • 11.1. Commercial
  • 11.2. Government
  • 11.3. Military
  • 11.4. Research Institution

12. Space Propulsion Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Space Propulsion Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Space Propulsion Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Aerojet Rocketdyne Holdings, Inc.
    • 15.3.2. Safran SA
    • 15.3.3. Northrop Grumman Corporation
    • 15.3.4. United Launch Alliance, LLC
    • 15.3.5. Lockheed Martin Corporation
    • 15.3.6. Mitsubishi Heavy Industries, Ltd.
    • 15.3.7. ArianeGroup SAS
    • 15.3.8. AVIO S.p.A.
    • 15.3.9. IHI Aerospace Co., Ltd.
    • 15.3.10. Rocket Lab USA, Inc.
Product Code: MRR-4F4C36263844

LIST OF FIGURES

  • FIGURE 1. GLOBAL SPACE PROPULSION MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2024 VS 2032 (%)
  • FIGURE 3. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 4. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2024 VS 2032 (%)
  • FIGURE 5. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2024 VS 2032 (%)
  • FIGURE 7. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2024 VS 2032 (%)
  • FIGURE 9. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SPACE PROPULSION MARKET SIZE, BY REGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 11. AMERICAS SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 12. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 13. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 14. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 15. EUROPE SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 16. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 17. AFRICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 18. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 19. GLOBAL SPACE PROPULSION MARKET SIZE, BY GROUP, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 20. ASEAN SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 21. GCC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 22. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 23. BRICS SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 24. G7 SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 25. NATO SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 26. GLOBAL SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2032 (USD MILLION)
  • FIGURE 27. SPACE PROPULSION MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 28. SPACE PROPULSION MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. SPACE PROPULSION MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL SPACE PROPULSION MARKET SIZE, 2018-2024 (USD MILLION)
  • TABLE 4. GLOBAL SPACE PROPULSION MARKET SIZE, 2025-2032 (USD MILLION)
  • TABLE 5. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 6. GLOBAL SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 7. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 8. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 9. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 10. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 11. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 12. GLOBAL SPACE PROPULSION MARKET SIZE, BY CHEMICAL PROPULSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 13. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 14. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 15. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 16. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 17. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 18. GLOBAL SPACE PROPULSION MARKET SIZE, BY ELECTRIC PROPULSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 19. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 20. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 21. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 22. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 23. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 24. GLOBAL SPACE PROPULSION MARKET SIZE, BY HYBRID PROPULSION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 25. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 26. GLOBAL SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 27. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 28. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 29. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 30. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 31. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 32. GLOBAL SPACE PROPULSION MARKET SIZE, BY CREWED MISSIONS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 33. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 34. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 35. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 36. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 37. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 38. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEEP SPACE MISSIONS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 39. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 40. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 41. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 42. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 43. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 44. GLOBAL SPACE PROPULSION MARKET SIZE, BY LAUNCH VEHICLE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 45. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 46. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 47. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 48. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 49. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 50. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 51. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 52. GLOBAL SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 53. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 54. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 55. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 56. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 57. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 58. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMUNICATION SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 59. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 60. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 61. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 62. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 63. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 64. GLOBAL SPACE PROPULSION MARKET SIZE, BY EARTH OBSERVATION SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 65. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 66. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 67. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 68. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 69. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 70. GLOBAL SPACE PROPULSION MARKET SIZE, BY NAVIGATION SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 71. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 72. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 73. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 74. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 75. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 76. GLOBAL SPACE PROPULSION MARKET SIZE, BY SCIENTIFIC SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 77. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 78. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 79. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 80. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 81. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 82. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 83. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 84. GLOBAL SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 85. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 86. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 87. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 88. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 89. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 90. GLOBAL SPACE PROPULSION MARKET SIZE, BY CUBESAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 91. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 92. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 93. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 94. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 95. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 96. GLOBAL SPACE PROPULSION MARKET SIZE, BY MICROSAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 97. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 98. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 99. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 100. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 101. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 102. GLOBAL SPACE PROPULSION MARKET SIZE, BY NANOSAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 103. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 104. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 105. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 106. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 107. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 108. GLOBAL SPACE PROPULSION MARKET SIZE, BY PICOSAT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 109. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 110. GLOBAL SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 111. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 112. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 113. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 114. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 115. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 116. GLOBAL SPACE PROPULSION MARKET SIZE, BY DEORBIT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 117. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 118. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 119. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 120. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 121. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 122. GLOBAL SPACE PROPULSION MARKET SIZE, BY ORBIT RAISING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 123. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 124. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 125. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 126. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 127. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 128. GLOBAL SPACE PROPULSION MARKET SIZE, BY STATION KEEPING, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 129. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 130. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 131. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 132. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 133. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 134. GLOBAL SPACE PROPULSION MARKET SIZE, BY TRANSFER MANEUVERS, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 135. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 136. GLOBAL SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 137. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 138. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 139. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 140. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 141. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 142. GLOBAL SPACE PROPULSION MARKET SIZE, BY COMMERCIAL, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 143. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 144. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 145. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 146. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 147. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 148. GLOBAL SPACE PROPULSION MARKET SIZE, BY GOVERNMENT, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 149. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 150. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 151. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 152. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 153. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 154. GLOBAL SPACE PROPULSION MARKET SIZE, BY MILITARY, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 155. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 156. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 157. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 158. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 159. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 160. GLOBAL SPACE PROPULSION MARKET SIZE, BY RESEARCH INSTITUTION, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 161. GLOBAL SPACE PROPULSION MARKET SIZE, BY REGION, 2018-2024 (USD MILLION)
  • TABLE 162. GLOBAL SPACE PROPULSION MARKET SIZE, BY REGION, 2025-2032 (USD MILLION)
  • TABLE 163. AMERICAS SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 164. AMERICAS SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 165. AMERICAS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 166. AMERICAS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 167. AMERICAS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 168. AMERICAS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 169. AMERICAS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 170. AMERICAS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 171. AMERICAS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 172. AMERICAS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 173. AMERICAS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 174. AMERICAS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 175. AMERICAS SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 176. AMERICAS SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 177. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 178. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 179. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 180. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 181. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 182. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 183. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 184. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 185. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 186. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 187. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 188. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 189. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 190. NORTH AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 191. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 192. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 193. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 194. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 195. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 196. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 197. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 198. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 199. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 200. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 201. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 202. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 203. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 204. LATIN AMERICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 205. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2018-2024 (USD MILLION)
  • TABLE 206. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SUBREGION, 2025-2032 (USD MILLION)
  • TABLE 207. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 208. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 209. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 210. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 211. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 212. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 213. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 214. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 215. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 216. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 217. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 218. EUROPE, MIDDLE EAST & AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 219. EUROPE SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 220. EUROPE SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 221. EUROPE SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 222. EUROPE SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 223. EUROPE SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 224. EUROPE SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 225. EUROPE SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 226. EUROPE SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 227. EUROPE SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 228. EUROPE SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 229. EUROPE SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 230. EUROPE SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 231. EUROPE SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 232. EUROPE SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 233. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 234. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 235. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 236. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 237. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 238. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 239. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 240. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 241. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 242. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 243. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 244. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 245. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 246. MIDDLE EAST SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 247. AFRICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 248. AFRICA SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 249. AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 250. AFRICA SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 251. AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 252. AFRICA SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 253. AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 254. AFRICA SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 255. AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 256. AFRICA SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 257. AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 258. AFRICA SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 259. AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 260. AFRICA SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 261. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 262. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 263. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 264. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 265. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 266. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 267. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 268. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 269. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 270. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 271. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 272. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 273. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 274. ASIA-PACIFIC SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 275. GLOBAL SPACE PROPULSION MARKET SIZE, BY GROUP, 2018-2024 (USD MILLION)
  • TABLE 276. GLOBAL SPACE PROPULSION MARKET SIZE, BY GROUP, 2025-2032 (USD MILLION)
  • TABLE 277. ASEAN SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 278. ASEAN SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 279. ASEAN SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 280. ASEAN SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 281. ASEAN SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 282. ASEAN SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 283. ASEAN SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 284. ASEAN SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 285. ASEAN SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 286. ASEAN SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 287. ASEAN SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 288. ASEAN SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 289. ASEAN SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 290. ASEAN SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 291. GCC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 292. GCC SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 293. GCC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 294. GCC SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 295. GCC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 296. GCC SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 297. GCC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 298. GCC SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 299. GCC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 300. GCC SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 301. GCC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 302. GCC SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 303. GCC SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 304. GCC SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 305. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 306. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 307. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 308. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 309. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 310. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 311. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 312. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 313. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 314. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 315. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 316. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 317. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 318. EUROPEAN UNION SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 319. BRICS SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 320. BRICS SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 321. BRICS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 322. BRICS SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 323. BRICS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 324. BRICS SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 325. BRICS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 326. BRICS SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2025-2032 (USD MILLION)
  • TABLE 327. BRICS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2018-2024 (USD MILLION)
  • TABLE 328. BRICS SPACE PROPULSION MARKET SIZE, BY SMALL SATELLITE, 2025-2032 (USD MILLION)
  • TABLE 329. BRICS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2018-2024 (USD MILLION)
  • TABLE 330. BRICS SPACE PROPULSION MARKET SIZE, BY APPLICATION, 2025-2032 (USD MILLION)
  • TABLE 331. BRICS SPACE PROPULSION MARKET SIZE, BY END USER, 2018-2024 (USD MILLION)
  • TABLE 332. BRICS SPACE PROPULSION MARKET SIZE, BY END USER, 2025-2032 (USD MILLION)
  • TABLE 333. G7 SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2018-2024 (USD MILLION)
  • TABLE 334. G7 SPACE PROPULSION MARKET SIZE, BY COUNTRY, 2025-2032 (USD MILLION)
  • TABLE 335. G7 SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2018-2024 (USD MILLION)
  • TABLE 336. G7 SPACE PROPULSION MARKET SIZE, BY PROPULSION TYPE, 2025-2032 (USD MILLION)
  • TABLE 337. G7 SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2018-2024 (USD MILLION)
  • TABLE 338. G7 SPACE PROPULSION MARKET SIZE, BY VEHICLE TYPE, 2025-2032 (USD MILLION)
  • TABLE 339. G7 SPACE PROPULSION MARKET SIZE, BY SATELLITE PLATFORM, 2018-2024 (USD MILLION)
  • TABLE 340. G7 SPACE PROPULSION MARKET SIZE, BY SATELLITE PLA
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!