Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1918624

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1918624

Satellite Attitude Measurement & Orientation Module Market by Component Type, Platform Type, Orbit Type, Application - Global Forecast 2026-2032

PUBLISHED:
PAGES: 187 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Satellite Attitude Measurement & Orientation Module Market was valued at USD 131.83 million in 2025 and is projected to grow to USD 142.43 million in 2026, with a CAGR of 5.15%, reaching USD 187.48 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 131.83 million
Estimated Year [2026] USD 142.43 million
Forecast Year [2032] USD 187.48 million
CAGR (%) 5.15%

A clear and authoritative overview of satellite attitude measurement fundamentals, subsystem roles, and technological drivers shaping contemporary mission architectures

Satellite attitude measurement and orientation modules are central to mission success across commercial, defense, government, and scientific applications. These subsystems determine a spacecraft's pointing accuracy, stabilization, and attitude control, enabling tasks from high-resolution Earth observation and broadband communications to precision scientific measurements and rendezvous operations. Recent technological strides, systemic shifts in launch economics, and evolving mission architectures have elevated the strategic importance of these modules for both established prime contractors and emergent NewSpace entrants.

The architecture of an attitude control system typically combines sensors, actuators, and control algorithms. Sensors provide the state estimate, actuators execute control torques, and software interprets sensor data to command actuators in closed-loop control. Advances in sensor quality, miniaturization of inertial technologies, commercial-off-the-shelf adoption, and algorithmic sophistication have collectively broadened the accessible performance envelope. As a result, the technology landscape now spans high-precision star trackers and reaction wheels for fine pointing to robust magnetorquers and thrusters for momentum management in constrained platforms.

Given the rapid pace of platform diversity-ranging from large geostationary platforms to proliferated low Earth orbit constellations-the design imperatives for attitude modules vary widely. Trade-offs between mass, power, reliability, and cost drive distinct configurations, while mission profiles and regulatory requirements shape supplier selection and integration timelines. Consequently, decision-makers must balance legacy proven solutions against innovative, risk-tolerant alternatives, making a nuanced understanding of component capabilities and system-level integration essential for mission planning and procurement.

How miniaturization, autonomous control algorithms, and evolving mission concepts are reshaping supplier selection and system design priorities in attitude subsystems

The landscape for attitude measurement and orientation modules is undergoing transformative shifts driven by several converging trends. First, the surge in low Earth orbit mission deployments has altered performance priorities: scalable, low-mass, low-power solutions are now as important as absolute precision. Second, sensor and actuator miniaturization-particularly in microelectromechanical inertial measurement units and compact star trackers-has enabled high-functionality payloads on smaller platforms, unlocking new commercial models and responsive mission concepts.

Third, algorithmic evolution and on-board autonomy are reducing reliance on ground intervention for attitudes that must quickly react to dynamic mission environments. This trend includes adaptive control algorithms, machine learning-augmented sensor fusion, and fault detection strategies that increase resilience against single-point failures. Fourth, supply chain diversification and the integration of commercial-off-the-shelf components have shortened development cycles but introduced new considerations for qualification and radiation tolerance. Finally, the rise of service-based capabilities-such as on-orbit servicing, debris remediation, and satellite life-extension-has created demand for modules with enhanced rendezvous, proximity operations, and maneuvering support. Together, these shifts are reshaping procurement criteria, supplier ecosystems, and the competitive dynamics of the sector.

Assessing the strategic and operational ramifications of 2025 tariff measures on procurement, supply chain resilience, and domestic capability development for attitude modules

The imposition of cumulative tariffs in 2025 by the United States has introduced a set of supply chain and procurement responses that affect the attitude measurement and orientation module ecosystem. Manufacturers and integrators dependent on cross-border flows of specialized components have been prompted to reassess sourcing strategies, leading to procurement diversification and accelerated engagement with domestic and allied suppliers. In turn, this has elevated the importance of supplier risk management, vendor qualification cycles, and long-term contractual arrangements that include localization or dual-sourcing clauses.

Moreover, the tariffs have catalyzed greater scrutiny of component provenance and compliance processes, as procurement teams must now reconcile cost, lead time, and regulatory exposure. For certain subsystems that rely on high-precision optics, specialty semiconductors, or space-grade actuation elements, the administrative overhead for import compliance and duties has influenced program budgets and schedule baselines. Consequently, some organizations have explored redesigns that favor COTS components where possible, while others have invested in in-house manufacturing capability to preserve performance margins.

At the same time, strategic responses include the formation of closer supplier partnerships, co-investment in qualification testbeds, and an emphasis on lifecycle support agreements that can mitigate tariff-driven cost volatility. While tariffs introduce near-term frictions, they have also accelerated conversations around industrial policy, sovereign capability-building, and collaborative development models that promise greater resilience over the long term.

In-depth segmentation perspective linking component functionality, platform constraints, mission application demands, and orbital environment implications for system design choices

Segmentation analysis reveals divergent performance expectations and procurement behaviors when examined across component type, platform type, application, and orbit environment. When considering component types such as control moment gyroscopes, earth sensors, inertial measurement units broken down into accelerometers and gyroscopes, magnetic torquers, magnetometers, reaction wheels, star trackers, sun sensors, and thrusters, each element imposes unique integration, testing, and calibration requirements. These differences influence the engineering trade-offs for platform designers who must select sensor suites that align with pointing accuracy requirements, redundancy strategies, and mission lifetime constraints.

Platform type further modulates these choices, as large satellites prioritize high-precision instruments and component redundancy, whereas nano-, micro-, and mini-satellite classes prioritize mass, volume, and power efficiency. Medium satellites often represent a hybrid market where moderate precision and cost effectiveness are balanced. Application context-commercial communications, defense and security missions, government civil programs, and scientific exploration-creates additional layers of requirement specificity, such as electromagnetic compatibility for defense applications or jitter control for high-resolution imaging for scientific missions. Orbit type introduces environmental and operational constraints; geostationary and medium Earth orbits impose sustained thermal and radiation profiles different from highly elliptical or low Earth orbits, while low Earth orbit missions must account for atmospheric drag, higher debris collision probabilities, and frequent attitude adjustments for constellation maintenance.

Taken together, these segmentation dimensions demonstrate that a one-size-fits-all approach is untenable. Instead, successful suppliers and integrators adopt modular product families, tiered performance offerings, and configurable software stacks to meet the variegated requirements across component, platform, application, and orbit segments. This segmentation-informed approach supports targeted qualification pathways, cost-optimized production runs, and clearer procurement specifications that reduce integration risk and shorten time-to-mission.

Regional strategic dynamics and procurement behaviors shaping supplier engagement, localization efforts, and technology adoption across global aerospace markets

Regional dynamics materially influence technology adoption, supply chain structure, and investment priorities for attitude measurement and orientation modules. In the Americas, a combination of robust government procurement programs, a vibrant commercial launch and NewSpace ecosystem, and focused investment in defense capabilities has driven demand for advanced attitude control solutions with an emphasis on performance, end-to-end integration, and lifecycle sustainment. This environment fosters close collaboration between systems integrators and specialized component suppliers, and it incentivizes investments in domestic qualification and testing infrastructure.

Across Europe, the Middle East & Africa, diverse national strategies and a mix of sovereign programs alongside commercial activity create differentiated demand patterns. European entities often emphasize standards, interoperability, and sustainable supply chains, while select national programs in the Middle East prioritize capability development and strategic partnerships. The Africa segment remains emergent but shows growing interest in small satellite platforms for earth observation and communications, which in turn stimulates demand for cost-effective, ruggedized attitude solutions.

In the Asia-Pacific region, high-volume manufacturing capabilities, a rapidly expanding set of commercial operators, and substantial defense modernization programs have combined to accelerate both production scale and technological innovation. Regional suppliers increasingly compete on both cost and customization, and governmental policies in certain markets are actively encouraging localization and sovereign capability development. These regional variations underscore the importance of aligning market entry strategies, partnership models, and compliance frameworks with local procurement norms and industrial incentives.

Strategic competitive behaviors, partnership models, and capability investments that distinguish market leaders in satellite attitude and orientation subsystem development

The competitive landscape for attitude measurement and orientation modules is characterized by a mix of legacy aerospace prime suppliers, specialized component manufacturers, and agile NewSpace entrants. Incumbent suppliers leverage long track records of space qualification, extensive test infrastructure, and established relationships with mission integrators, which confer advantages for high-reliability, high-performance applications. Conversely, emergent firms apply rapid iteration cycles, modular architectures, and lower-cost manufacturing techniques to capture share in small satellite and constellation markets.

Collaborative relationships have become a core strategic tool, with technology partnerships, joint development agreements, and supplier risk-sharing arrangements enabling the rapid maturation of novel architectures and components. Investment in system engineering capabilities, radiation-tolerant design practices, and digital twin-based validation are differentiators for market leaders seeking to reduce integration risk and accelerate deployment. Additionally, aftermarket support-spare parts provisioning, on-orbit anomaly investigation, and software updates-has emerged as an important revenue and retention lever, prompting firms to offer extended service packages that encompass both hardware and software lifecycles.

Mergers and strategic acquisitions continue to realign capability portfolios, particularly where firms seek to vertically integrate sensor production or to gain competencies in autonomy and machine learning for control systems. Ultimately, competitive advantage accrues to organizations that pair rigorous aerospace heritage with adaptive product roadmaps and customer-centric integration practices.

Actionable strategic priorities for suppliers and integrators to enhance supply chain resilience, accelerate innovation, and optimize lifecycle value capture across missions

Industry leaders should pursue a set of pragmatic, high-impact actions to strengthen resilience, accelerate innovation, and secure long-term competitiveness. First, prioritize dual-sourcing strategies and supplier qualification roadmaps for critical components to reduce exposure to trade policy disruptions and to ensure continuity of supply. Second, invest in in-house testbeds and simulation environments to shorten qualification timelines and to validate subsystem performance under a range of orbital and thermal conditions. These facilities support both incremental enhancements and disruptive design changes without exposing programs to undue integration risk.

Third, adopt software-defined control architectures that enable feature upgrades, adaptive control strategies, and in-field calibration while preserving hardware interfaces. Such architectures enhance flexibility across platform classes and reduce the need for hardware redesigns. Fourth, formalize aftermarket and lifecycle support offerings that bundle hardware, software, and advisory services, thereby creating recurring revenue streams and closer customer relationships. Fifth, pursue targeted partnerships and co-development agreements to access specialized technologies-such as advanced star trackers or MEMS-based inertial sensors-while sharing development risk. Finally, align sourcing, design, and qualification practices with prevailing regulatory and export-control environments to expedite compliance and reduce administrative friction. By implementing these measures, organizations can better navigate supply chain pressures, capitalize on technological advances, and meet the evolving expectations of mission owners.

A rigorous mixed-methods research approach combining expert interviews, technical literature analysis, capability mapping, and validation procedures to ensure robust insights

The research methodology underpinning this assessment integrates a multi-source approach designed to ensure robustness, transparency, and reproducibility. Primary research included structured interviews with system integrators, component manufacturers, mission architects, and subject matter experts to capture first-hand perspectives on technology performance, procurement drivers, and risk exposures. Where possible, interviewees represented a range of platform classes and mission applications to provide balanced insights. Secondary research comprised a targeted review of technical literature, regulatory documents, patent filings, and open-source program disclosures to triangulate primary inputs and to identify emergent technology trajectories.

Analytical methods included capability mapping to align component attributes with platform and mission requirements, qualitative scenario analysis to explore the implications of policy and supply chain shifts, and comparative supplier benchmarking focused on test infrastructure, qualification pedigree, and aftermarket support. Validation activities involved cross-checking findings through follow-up interviews and reviewing sample integration test reports to confirm assertions about reliability and performance. Throughout, attention was paid to differentiating between nascent innovations and field-proven solutions, and to documenting assumptions and data limitations so stakeholders can interpret findings within an appropriate context.

Concluding perspectives emphasizing capability resilience, modular design imperatives, and collaborative strategies to navigate evolving technological and policy landscapes

In conclusion, satellite attitude measurement and orientation modules occupy a pivotal position in modern space architectures, where their performance and resilience directly affect mission viability and competitive differentiation. The sector is evolving rapidly under the influence of miniaturization, software-enabled autonomy, diversified platform classes, and shifting policy environments. These forces create both opportunities for innovation and challenges for supply chain management, regulatory compliance, and long-term sustainment.

Decision-makers should therefore adopt a strategic posture that emphasizes modular product design, diversified sourcing, investment in qualification infrastructure, and close collaboration with mission integrators. By doing so, organizations can capture the performance benefits of advanced sensors and actuators while containing integration risk and cost exposure. Finally, proactive engagement with policy developments and industrial partnerships will be essential to navigate the operational uncertainties introduced by trade measures and to secure the capabilities necessary for future mission success.

Product Code: MRR-AE420CB15616

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Satellite Attitude Measurement & Orientation Module Market, by Component Type

  • 8.1. Control Moment Gyroscopes
  • 8.2. Earth Sensors
  • 8.3. Inertial Measurement Units
    • 8.3.1. Accelerometers
    • 8.3.2. Gyroscopes
  • 8.4. Magnetic Torquers
  • 8.5. Magnetometers
  • 8.6. Reaction Wheels
  • 8.7. Star Trackers
  • 8.8. Sun Sensors
  • 8.9. Thrusters

9. Satellite Attitude Measurement & Orientation Module Market, by Platform Type

  • 9.1. Large Satellite
  • 9.2. Medium Satellite
  • 9.3. Micro Satellite
  • 9.4. Mini Satellite
  • 9.5. Nano Satellite

10. Satellite Attitude Measurement & Orientation Module Market, by Orbit Type

  • 10.1. Geostationary Orbit
  • 10.2. Highly Elliptical Orbit
  • 10.3. Low Earth Orbit
  • 10.4. Medium Earth Orbit

11. Satellite Attitude Measurement & Orientation Module Market, by Application

  • 11.1. Commercial
  • 11.2. Defense
  • 11.3. Government
  • 11.4. Scientific

12. Satellite Attitude Measurement & Orientation Module Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Satellite Attitude Measurement & Orientation Module Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Satellite Attitude Measurement & Orientation Module Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Satellite Attitude Measurement & Orientation Module Market

16. China Satellite Attitude Measurement & Orientation Module Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Airbus Defence and Space GmbH
  • 17.6. Attitude Control Systems Ltd.
  • 17.7. BAE Systems Inc.
  • 17.8. Blue Canyon Technologies Inc.
  • 17.9. Boeing Company
  • 17.10. Honeywell International Inc.
  • 17.11. iXblue SAS
  • 17.12. Jena-Optronik GmbH
  • 17.13. Kearfott Corporation
  • 17.14. L3Harris Technologies, Inc.
  • 17.15. Meggitt PLC
  • 17.16. Northrop Grumman Corporation
  • 17.17. OHB SE
  • 17.18. QinetiQ Group plc
  • 17.19. Raytheon Technologies Corporation
  • 17.20. RUAG Space AG
  • 17.21. Satlantis S.A.
  • 17.22. Sierra Nevada Corporation
  • 17.23. Thales Alenia Space S.A.
  • 17.24. Vecna Robotics, Inc.
Product Code: MRR-AE420CB15616

LIST OF FIGURES

  • FIGURE 1. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY CONTROL MOMENT GYROSCOPES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY CONTROL MOMENT GYROSCOPES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY CONTROL MOMENT GYROSCOPES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY EARTH SENSORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY EARTH SENSORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY EARTH SENSORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ACCELEROMETERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ACCELEROMETERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ACCELEROMETERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GYROSCOPES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GYROSCOPES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GYROSCOPES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MAGNETIC TORQUERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MAGNETIC TORQUERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MAGNETIC TORQUERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MAGNETOMETERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MAGNETOMETERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MAGNETOMETERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY REACTION WHEELS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY REACTION WHEELS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY REACTION WHEELS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY STAR TRACKERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY STAR TRACKERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY STAR TRACKERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SUN SENSORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SUN SENSORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SUN SENSORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY THRUSTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY THRUSTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY THRUSTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY LARGE SATELLITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY LARGE SATELLITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY LARGE SATELLITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MEDIUM SATELLITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MEDIUM SATELLITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MEDIUM SATELLITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MICRO SATELLITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MICRO SATELLITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MICRO SATELLITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MINI SATELLITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MINI SATELLITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MINI SATELLITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY NANO SATELLITE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY NANO SATELLITE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY NANO SATELLITE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GEOSTATIONARY ORBIT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GEOSTATIONARY ORBIT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GEOSTATIONARY ORBIT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY HIGHLY ELLIPTICAL ORBIT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY HIGHLY ELLIPTICAL ORBIT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY HIGHLY ELLIPTICAL ORBIT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY LOW EARTH ORBIT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY LOW EARTH ORBIT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY LOW EARTH ORBIT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MEDIUM EARTH ORBIT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MEDIUM EARTH ORBIT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY MEDIUM EARTH ORBIT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMMERCIAL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMMERCIAL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMMERCIAL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY DEFENSE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY DEFENSE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY DEFENSE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GOVERNMENT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GOVERNMENT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GOVERNMENT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SCIENTIFIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SCIENTIFIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SCIENTIFIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 80. AMERICAS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 81. AMERICAS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 82. AMERICAS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 83. AMERICAS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 84. AMERICAS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 85. AMERICAS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 86. NORTH AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 87. NORTH AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 88. NORTH AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 89. NORTH AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 90. NORTH AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 91. NORTH AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 92. LATIN AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 93. LATIN AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 94. LATIN AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 95. LATIN AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 96. LATIN AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 97. LATIN AMERICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 98. EUROPE, MIDDLE EAST & AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 99. EUROPE, MIDDLE EAST & AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 100. EUROPE, MIDDLE EAST & AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 101. EUROPE, MIDDLE EAST & AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 102. EUROPE, MIDDLE EAST & AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 103. EUROPE, MIDDLE EAST & AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 104. EUROPE SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 105. EUROPE SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 106. EUROPE SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 110. MIDDLE EAST SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 111. MIDDLE EAST SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 112. MIDDLE EAST SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 113. MIDDLE EAST SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 114. MIDDLE EAST SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 115. MIDDLE EAST SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 116. AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 117. AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 118. AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 119. AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 120. AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 121. AFRICA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 122. ASIA-PACIFIC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 123. ASIA-PACIFIC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 124. ASIA-PACIFIC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 125. ASIA-PACIFIC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 126. ASIA-PACIFIC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 127. ASIA-PACIFIC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 128. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 129. ASEAN SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 130. ASEAN SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 131. ASEAN SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 132. ASEAN SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 133. ASEAN SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 134. ASEAN SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 135. GCC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 136. GCC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 137. GCC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 138. GCC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 139. GCC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 140. GCC SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 141. EUROPEAN UNION SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 142. EUROPEAN UNION SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 143. EUROPEAN UNION SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 144. EUROPEAN UNION SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 145. EUROPEAN UNION SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 146. EUROPEAN UNION SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 147. BRICS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 148. BRICS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 149. BRICS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 150. BRICS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 151. BRICS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 152. BRICS SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 153. G7 SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. G7 SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 155. G7 SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 156. G7 SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 157. G7 SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 158. G7 SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 159. NATO SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 160. NATO SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 161. NATO SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 162. NATO SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 163. NATO SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 164. NATO SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 165. GLOBAL SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 166. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 167. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 168. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 169. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 170. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 171. UNITED STATES SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 172. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 173. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY COMPONENT TYPE, 2018-2032 (USD MILLION)
  • TABLE 174. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY INERTIAL MEASUREMENT UNITS, 2018-2032 (USD MILLION)
  • TABLE 175. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY PLATFORM TYPE, 2018-2032 (USD MILLION)
  • TABLE 176. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY ORBIT TYPE, 2018-2032 (USD MILLION)
  • TABLE 177. CHINA SATELLITE ATTITUDE MEASUREMENT & ORIENTATION MODULE MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!