Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1923606

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1923606

Inductive Coupled Power Transfer Market by Power Range, Product Type, Transfer Distance, End User - Global Forecast 2026-2032

PUBLISHED:
PAGES: 184 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Inductive Coupled Power Transfer Market was valued at USD 4.50 billion in 2025 and is projected to grow to USD 5.23 billion in 2026, with a CAGR of 17.14%, reaching USD 13.64 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 4.50 billion
Estimated Year [2026] USD 5.23 billion
Forecast Year [2032] USD 13.64 billion
CAGR (%) 17.14%

Foundational overview and evolving technical priorities that define modern inductive coupled power transfer systems and their cross-sector integration

Inductive coupled power transfer has evolved from a laboratory curiosity into a versatile engineering approach that addresses modern demands for cable-free energy delivery, safety, and integration across consumer, mobility, healthcare, and industrial domains. At its core, the technology uses magnetic coupling to transfer energy between coils, leveraging resonant techniques, coil geometry optimization, and power electronics to balance efficiency, alignment tolerance, and thermal management. Over the past decade, refinements in coil materials, magnetic cores, and driver topologies have expanded practical use cases from low-power wearable charging to high-power vehicle charging, while simultaneously raising engineering expectations for interoperability, electromagnetic compatibility, and certification.

Today's implementations must reconcile user convenience with rigorous reliability and safety requirements, meaning that system architects increasingly prioritize robust foreign object detection, adaptive power control, and integrated thermal monitoring. Concurrently, advances in semiconductor switching devices and digital control are enabling higher switching frequencies, compact power stages, and improved power density. These developments reduce the size and weight of transmitters and receivers, permitting tighter mechanical integration into product enclosures and vehicle platforms.

Looking forward, industry stakeholders are shifting focus from single-component optimization to system-level design that incorporates mechanical constraints, regulatory compliance paths, and lifecycle considerations. As a result, cross-functional teams that include electrical, mechanical, thermal, and regulatory expertise are now essential for translating prototype performance into products that can be manufactured, certified, and maintained at scale. This integrative perspective is reshaping how organizations plan R&D investments, select suppliers, and architect product roadmaps.

Key technological, supply chain, and standards-driven shifts reshaping product roadmaps and commercial adoption trajectories across industries

The landscape for inductive coupled power transfer is experiencing a set of transformative shifts that are reshaping technology roadmaps, supply chains, and adoption curves. Advances in wide-bandgap semiconductor devices and more sophisticated digital control have elevated achievable power density and switched-mode efficiency, enabling designs that were previously impractical because of size or thermal constraints. At the same time, material science improvements in magnetic cores, conductors, and encapsulation techniques have reduced losses and enabled more compact coil geometries, prompting OEMs to reconsider form factor tradeoffs and integration strategies.

Standards activity and ecosystem consolidation are creating new expectations for interoperability and certification pathways. As interoperability frameworks mature, product development cycles increasingly factor in compliance testing and multi-vendor validation, which affects time-to-market and architecture choices. Parallel to standards movement, manufacturing strategies are shifting toward regionalization and vertical integration to mitigate supply risk and shorten logistics timelines, with design teams placing stronger emphasis on components that are readily available through multiple qualified suppliers.

User expectations are also changing; consumers demand seamless, frictionless charging experiences while fleet operators and healthcare providers emphasize uptime, durability, and safety. Consequently, product roadmaps now prioritize adaptive power management, predictive maintenance capabilities enabled by embedded sensing, and compatibility with broader digital ecosystems. These cross-cutting shifts require organizations to adopt holistic development processes that link R&D, procurement, and certification functions more tightly than in previous technology cycles.

How evolving United States tariff dynamics are altering procurement, architecture and investment planning for inductive power systems across the value chain

Tariff actions and trade policy adjustments in the United States have had a cumulative impact on the inductive power transfer ecosystem by altering procurement economics and strategic sourcing decisions. Import duties on key components and subassemblies increase landed costs for companies that rely on global supply chains, prompting buyers to reassess vendor qualification models and to prioritize suppliers with localized manufacturing or diversified production footprints. In response, some firms accelerate supplier dual-sourcing strategies and increase inventory buffers for long-lead items to maintain production continuity.

Beyond immediate cost implications, tariffs influence longer-term investment choices. Organizations considering capital-intensive deployments, such as high-power wireless charging stations or medical charging infrastructures, may defer or phase investments while evaluating the total cost of ownership under new tariff regimes. This dynamic encourages design teams to explore alternative bill-of-materials options, including domestically produced magnetic materials, alternative semiconductor suppliers, or modular architectures that allow substitution of tariff-affected components without extensive redesign.

Moreover, policy-driven cost increases spur negotiations around contract terms, lead times, and price indexing, with procurement teams seeking greater transparency from suppliers and greater contractual flexibility. Regional manufacturing footprints and strategic partnerships become more attractive as a hedge against ongoing policy volatility. Ultimately, tariff effects extend beyond sticker price to reshape supplier relationships, product roadmaps, and the timing of deployment decisions, making adaptive procurement and scenario planning essential for resilience.

Multidimensional segmentation-driven insights linking end use, power bands, product typologies, and transfer distances to engineering and commercialization tradeoffs

Segmentation analysis reveals technology and commercialization patterns that differ by end use, power range, product type, and transfer distance, each imposing distinct engineering, regulatory, and go-to-market requirements. Based on End User, market studies span Automotive, Consumer Electronics, Healthcare, and Industrial; automotive applications emphasize robustness, alignment tolerance, and integration into vehicle platforms, where mechanical packaging and system safety dominate design constraints. Consumer electronics prioritize miniaturization, convenience, and interoperability with established charging ecosystems, driving continued attention to form factor, thermal management, and user experience. Healthcare implementations require sterilizable materials, high reliability, and stringent validation cycles to satisfy clinical workflows and regulatory scrutiny, while industrial deployments demand high durability, long duty cycles, and compatibility with factory automation protocols.

Based on Power Range, market studies consider 50W To 250W, 5W To 50W, Less Than 5W, and More Than 250W; low-power segments under 5W favor compact, low-cost coils and minimal thermal systems suitable for wearables and small IoT devices, whereas the 5W to 50W band covers most consumer and medical charging use cases that balance efficiency with size. The 50W to 250W range introduces greater thermal and EMI considerations and is commonly associated with appliance-level charging and certain industrial tools. Power levels above 250W require advanced thermal management, higher-grade magnetic materials, and rigorous safety controls, making them most relevant to vehicle charging and heavy industrial equipment.

Based on Product Type, market studies examine Charging Pads, Electric Vehicle Charging, Medical Device Chargers, and Wearable Chargers; Electric Vehicle Charging is further studied across Fast Charging, Slow Charging, and Ultra-Fast Charging. Charging pads emphasize user ergonomics and integration into furniture and consumer products. Electric vehicle wireless charging spans slow, convenient overnight systems to fast and ultra-fast solutions aimed at fleet operations and public charging infrastructures, and each tier demands different coil designs, control strategies, and interoperability schemas. Medical device chargers focus on repeatable performance and cleaning protocols, often integrating redundant safety features and traceability. Wearable chargers must balance form factor, biocompatibility where appropriate, and user convenience.

Based on Transfer Distance, market studies explore Long Range, Medium Range, and Short Range transfer scenarios; short-range inductive coupling typically yields the highest efficiency and simplest alignment needs, making it suitable for consumer pads and wearables. Medium-range resonant systems trade efficiency for convenience and alignment tolerance, offering practical solutions for embedded furniture or vehicle platforms. Long-range inductive transfer is an active research area that requires substantial advances in coil design and regulatory acceptance before it becomes a mainstream commercial option. Together, these segmentation lenses provide a comprehensive framework for aligning technology choices with application-specific constraints and commercial priorities.

How regional regulatory frameworks, manufacturing strengths, and adoption patterns across the Americas, Europe, Middle East & Africa, and Asia-Pacific shape deployment strategies

Regional dynamics materially influence commercialization paths, procurement strategies, and standards priorities across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, strong adoption of electric vehicles, coupled with established automotive OEMs and a growing startup ecosystem, creates opportunities for high-power wireless charging pilots integrated into fleets and depot operations. Regulatory emphasis on safety and emissions indirectly accelerates interest in wireless charging as part of broader electrification strategies, while regional manufacturing capabilities for power electronics support near-term prototyping and small-batch production.

In Europe, Middle East & Africa, regulatory harmonization and a dense regulatory landscape shape design and certification requirements, particularly for medical and consumer electronics applications. European automotive manufacturers and tier-one suppliers tend to favor rigorous validation and standards-driven interoperability, which encourages investments in compliance testing and cross-industry collaboration. The region's fragmented regulatory jurisdictions, however, require tailored certification strategies and local partnerships to scale deployments effectively.

Asia-Pacific remains a central hub for manufacturing, component sourcing, and rapid product iteration. Strong consumer electronics supply chains, extensive semiconductor manufacturing capacity, and large-scale urban deployments provide fertile ground for rapid prototyping and cost-driven innovation. Policymakers in several countries within the region are actively encouraging electric mobility and advanced manufacturing, which accelerates investments in demonstration projects and localization of key components. Across regions, the interplay of regulatory expectations, manufacturing capabilities, and user adoption patterns drives differentiated go-to-market strategies and strategic priorities for companies seeking global reach.

Strategic competitive behaviors and partnership models among suppliers, integrators, and startups defining resilience and differentiation in inductive power ecosystems

Company-level dynamics in the inductive power landscape center on strategic partnerships, vertical integration, and intellectual property positioning rather than purely on product differentiation. Systems integrators and OEMs increasingly seek to secure supply chains by partnering with specialized coil manufacturers and power electronics vendors to ensure consistent quality and to accelerate certification. Semiconductor suppliers and power-stage vendors are leveraging their process and packaging capabilities to offer integrated modules that reduce design complexity for customers, while component manufacturers differentiate through improved materials, tighter tolerances, and higher thermal thresholds.

Startups contribute disruptive ideas and rapid iteration, often focusing on niche applications or novel coil architectures, which stimulates incumbents to acquire talent and IP or to form strategic alliances. At the same time, established industrial players and tier-one automotive suppliers expand their capabilities through targeted R&D investments, test platforms, and collaborations with standards bodies to shape interoperability outcomes. Across the ecosystem, companies that combine systems expertise with manufacturing scalability gain a competitive advantage, as end customers increasingly value turnkey solutions that simplify procurement, reduce integration risk, and accelerate certification timelines. Observing these dynamics, prudent firms prioritize flexible partnerships, robust IP strategies, and investments in validation capabilities to maintain relevance as standards and customer expectations evolve.

Actionable strategic priorities and practical engineering steps for organizations to mitigate risk and accelerate commercial deployments of wireless inductive solutions

Industry leaders should adopt a cohesive strategy that couples technology investment with pragmatic supply chain and regulatory planning to accelerate successful commercialization. Begin by prioritizing modular system designs that allow substitution of key components without a full redesign; this approach reduces exposure to supplier-specific tariff impacts and allows faster adaptation to evolving standards. Simultaneously, invest in advanced power electronics using wide-bandgap semiconductors and digital control architectures to improve power density and thermal performance while enabling software-driven feature upgrades and diagnostics.

Strengthen supplier relationships through co-development agreements and multi-sourcing strategies that secure critical magnetic materials and high-reliability components. Establish localized qualification pathways where feasible to mitigate logistics and policy risks. Parallel to supplier work, create a certification roadmap aligned with regional regulatory regimes and standards consortia to streamline validation testing and reduce time-to-market. Incorporate robust test rigs and repeatable validation protocols that simulate real-world usage across diverse environmental and alignment conditions.

Finally, align commercial teams with engineering and regulatory groups to develop clear value propositions for target end users, whether that is fleet uptime for automotive operators, sterilizable repeatability for healthcare providers, or seamless user experience for consumer products. Investing in pilot deployments with measurable KPIs and defined escalation paths will yield operational learning that can be rapidly folded into product revisions and go-to-market strategies, thereby reducing uncertainty during scale-up.

Robust mixed-methods approach combining expert interviews, technical review, patent mapping, and validation steps to produce actionable and verifiable insights

The research methodology underpinning this analysis combines primary qualitative inquiry with targeted technical assessment and secondary desk research to ensure robust, triangulated insights. Primary inputs included structured interviews with engineers, procurement leaders, and regulatory experts across multiple end-use sectors, focused on design constraints, supplier dynamics, and certification experiences. Technical evaluations drew upon component datasheets, whitepapers, and published standards documents to validate claims regarding performance, thermal behavior, and electromagnetic compatibility.

Secondary analysis incorporated patent landscape review and technology trend mapping to identify areas of concentrated innovation and potential competitive moats, while design-for-manufacturing reviews assessed typical bill-of-materials structures and supplier dependencies. Where appropriate, lab benchmark practices and publicly available test reports were referenced to compare efficiency and thermal profiles across representative topologies. Cross-validation steps were applied to reconcile disparate inputs and to surface consensus positions, with divergent viewpoints explicitly noted where they influence risk assessments.

Limitations of the methodology include potential variability in proprietary performance data and evolving policy environments that may change the operating context. To mitigate these limitations, recommendations emphasize adaptive strategies, scenario planning, and periodic updates to the research baseline informed by ongoing industry engagement and newly published technical standards.

Synthesis of technological readiness, regulatory complexity, and strategic imperatives that determine successful scaling of inductive power applications

In conclusion, inductive coupled power transfer has reached a level of technical maturity that supports meaningful commercial deployment across multiple sectors, yet achieving scalable, reliable, and regulatory-compliant products requires coordinated attention to system design, supply chain resilience, and standards alignment. Technological advances in power electronics and materials science unlock higher power densities and more compact implementations, while evolving user expectations and sectoral requirements drive demand for integrated safety, diagnostics, and interoperability features.

Policy and trade dynamics introduce an additional layer of complexity that affects procurement choices and investment timing, making flexible sourcing strategies and modular architectures particularly valuable. Regional differences in manufacturing capabilities, regulatory environments, and adoption tempo necessitate tailored commercialization plans that consider local certification pathways and partner ecosystems. Companies that combine strong engineering capabilities with proactive supplier management, targeted standards engagement, and pragmatic pilot programs will be best positioned to convert technical promise into operational reality.

Ultimately, success will hinge on cross-functional execution that aligns product development, procurement, certification, and commercial teams around measurable outcomes and incremental validation. This integrated approach reduces execution risk and accelerates learning, enabling faster scaling of inductive power solutions that deliver tangible benefits to users and stakeholders.

Product Code: MRR-867BED9AA091

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Inductive Coupled Power Transfer Market, by Power Range

  • 8.1. 50W To 250W
  • 8.2. 5W To 50W
  • 8.3. Less Than 5W
  • 8.4. More Than 250W

9. Inductive Coupled Power Transfer Market, by Product Type

  • 9.1. Charging Pads
  • 9.2. Electric Vehicle Charging
    • 9.2.1. Fast Charging
    • 9.2.2. Slow Charging
    • 9.2.3. Ultra-Fast Charging
  • 9.3. Medical Device Chargers
  • 9.4. Wearable Chargers

10. Inductive Coupled Power Transfer Market, by Transfer Distance

  • 10.1. Long Range
  • 10.2. Medium Range
  • 10.3. Short Range

11. Inductive Coupled Power Transfer Market, by End User

  • 11.1. Automotive
  • 11.2. Consumer Electronics
  • 11.3. Healthcare
  • 11.4. Industrial

12. Inductive Coupled Power Transfer Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Inductive Coupled Power Transfer Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Inductive Coupled Power Transfer Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Inductive Coupled Power Transfer Market

16. China Inductive Coupled Power Transfer Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Anker Innovations Limited
  • 17.6. Conductix-Wampfler GmbH
  • 17.7. Electreon Wireless Ltd.
  • 17.8. Energous Corporation
  • 17.9. ENRX GmbH
  • 17.10. HEVO, Inc.
  • 17.11. InductEV, Inc.
  • 17.12. Murata Manufacturing Co., Ltd.
  • 17.13. NXP Semiconductors N.V.
  • 17.14. Ossia Inc.
  • 17.15. Plugless Power Inc.
  • 17.16. Powercast Corporation
  • 17.17. Qualcomm Incorporated
  • 17.18. Renesas Electronics Corporation
  • 17.19. Samsung Electronics Co., Ltd.
  • 17.20. Solace Power, Inc.
  • 17.21. Texas Instruments Incorporated
  • 17.22. Wiferion GmbH
  • 17.23. WiTricity Corporation
  • 17.24. Wurth Elektronik eiSos GmbH & Co. KG
Product Code: MRR-867BED9AA091

LIST OF FIGURES

  • FIGURE 1. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY 50W TO 250W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY 50W TO 250W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY 50W TO 250W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY 5W TO 50W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY 5W TO 50W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY 5W TO 50W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY LESS THAN 5W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY LESS THAN 5W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY LESS THAN 5W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MORE THAN 250W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MORE THAN 250W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MORE THAN 250W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY CHARGING PADS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY CHARGING PADS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY CHARGING PADS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY FAST CHARGING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY FAST CHARGING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY FAST CHARGING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SLOW CHARGING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SLOW CHARGING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SLOW CHARGING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ULTRA-FAST CHARGING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ULTRA-FAST CHARGING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ULTRA-FAST CHARGING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MEDICAL DEVICE CHARGERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MEDICAL DEVICE CHARGERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MEDICAL DEVICE CHARGERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY WEARABLE CHARGERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY WEARABLE CHARGERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY WEARABLE CHARGERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY LONG RANGE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY LONG RANGE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY LONG RANGE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MEDIUM RANGE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MEDIUM RANGE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY MEDIUM RANGE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SHORT RANGE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SHORT RANGE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SHORT RANGE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY AUTOMOTIVE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY AUTOMOTIVE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY CONSUMER ELECTRONICS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY CONSUMER ELECTRONICS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY CONSUMER ELECTRONICS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY HEALTHCARE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY HEALTHCARE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY HEALTHCARE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY INDUSTRIAL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY INDUSTRIAL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY INDUSTRIAL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 62. AMERICAS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 63. AMERICAS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 64. AMERICAS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 65. AMERICAS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 66. AMERICAS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 67. AMERICAS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 68. NORTH AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 69. NORTH AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 70. NORTH AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 71. NORTH AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 72. NORTH AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 73. NORTH AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 74. LATIN AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 75. LATIN AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 76. LATIN AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 77. LATIN AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 78. LATIN AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 79. LATIN AMERICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 80. EUROPE, MIDDLE EAST & AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 81. EUROPE, MIDDLE EAST & AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 82. EUROPE, MIDDLE EAST & AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 83. EUROPE, MIDDLE EAST & AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 84. EUROPE, MIDDLE EAST & AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 85. EUROPE, MIDDLE EAST & AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 86. EUROPE INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 87. EUROPE INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 88. EUROPE INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 89. EUROPE INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 90. EUROPE INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 91. EUROPE INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 92. MIDDLE EAST INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 93. MIDDLE EAST INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 94. MIDDLE EAST INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 95. MIDDLE EAST INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 96. MIDDLE EAST INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 97. MIDDLE EAST INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 98. AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 99. AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 100. AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 101. AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 102. AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 103. AFRICA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 104. ASIA-PACIFIC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 105. ASIA-PACIFIC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 106. ASIA-PACIFIC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 107. ASIA-PACIFIC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 108. ASIA-PACIFIC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 109. ASIA-PACIFIC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 110. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 111. ASEAN INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 112. ASEAN INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 113. ASEAN INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 114. ASEAN INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 115. ASEAN INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 116. ASEAN INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 117. GCC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 118. GCC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 119. GCC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 120. GCC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 121. GCC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 122. GCC INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 123. EUROPEAN UNION INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 124. EUROPEAN UNION INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 125. EUROPEAN UNION INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 126. EUROPEAN UNION INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 127. EUROPEAN UNION INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 128. EUROPEAN UNION INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 129. BRICS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 130. BRICS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 131. BRICS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 132. BRICS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 133. BRICS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 134. BRICS INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 135. G7 INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 136. G7 INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 137. G7 INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 138. G7 INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 139. G7 INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 140. G7 INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 141. NATO INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 142. NATO INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 143. NATO INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 144. NATO INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 145. NATO INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 146. NATO INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 147. GLOBAL INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 148. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 149. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 150. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 151. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 152. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 153. UNITED STATES INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 154. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 155. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY POWER RANGE, 2018-2032 (USD MILLION)
  • TABLE 156. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 157. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY ELECTRIC VEHICLE CHARGING, 2018-2032 (USD MILLION)
  • TABLE 158. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY TRANSFER DISTANCE, 2018-2032 (USD MILLION)
  • TABLE 159. CHINA INDUCTIVE COUPLED POWER TRANSFER MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!