Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1923785

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1923785

Arrayed Waveguide Grating Chips Market by Chip Type, Waveguide Material, Integration Level, Wavelength Band, End-User Industry - Global Forecast 2026-2032

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Arrayed Waveguide Grating Chips Market was valued at USD 1.19 billion in 2025 and is projected to grow to USD 1.33 billion in 2026, with a CAGR of 12.87%, reaching USD 2.78 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 1.19 billion
Estimated Year [2026] USD 1.33 billion
Forecast Year [2032] USD 2.78 billion
CAGR (%) 12.87%

Setting the stage for AWG chips by connecting photonic design choices to real-world deployment demands across data centers, access networks, and long-haul systems

Arrayed waveguide grating chips have evolved from specialist photonic components into foundational building blocks for modern optical networks. This introduction examines how AWG chips enable wavelength routing, multiplexing, and demultiplexing across diverse architectures, supporting the simultaneous movement of many optical channels with compact footprints and deterministic performance. The technology bridges multiple material platforms and integration paradigms, from indium phosphide platforms that emphasize active functionality to silicon photonics approaches that prioritize density and CMOS-compatible fabrication techniques.

Over the last decade, design priorities have shifted to meet the demands of hyperscale data centers and telecom operators that require higher channel counts, tighter channel spacing, and greater environmental stability. Concurrently, innovations in reflective versus transmissive AWG topologies have expanded the design space for labs and manufacturers, allowing designers to choose between insertion-loss profiles, polarization sensitivity, and fabrication complexity. The interplay of waveguide materials such as silica, silicon nitride variants, and InP has generated a spectrum of trade-offs in loss, footprint, thermal tuning, and integration complexity.

This section frames AWG chips within the larger optical ecosystem and establishes the core technical and commercial drivers that follow through the remainder of the executive summary. It highlights the need for multidisciplinary coordination between photonic designers, packaging engineers, and systems architects to move from component-level performance to predictable system-level outcomes, all while navigating supply chain, regulatory, and deployment complexities.

How co-packaging, material breakthroughs, and dynamic network architectures are reshaping AWG chip priorities and supply strategies for industry players

The landscape for AWG chips is experiencing transformative shifts driven by technological maturation, evolving network topologies, and changing procurement behaviors. First, the push toward co-packaged optics is reframing where passive and active photonics are placed within the transceiver ecosystem, forcing a re-evaluation of thermal budgets, electrical interface standards, and mechanical tolerances. Second, the steady progress in silicon photonics and silicon nitride platforms is lowering barriers to higher channel counts and tighter channel spacing, enabling denser wavelength division multiplexing that was previously confined to more exotic material platforms.

Third, system architects are increasingly prioritizing modularity and reconfigurability, which elevates the commercial importance of tunable AWG designs and reconfigurable add/drop modules that allow operators to shift capacity dynamically without costly hardware replacements. Fourth, supply chain diversification and regional manufacturing initiatives are affecting sourcing strategies for critical substrates and foundry services, prompting companies to rationalize multi-sourcing models and invest in cross-qualified process flows. These technological and commercial inflections are converging with new service models from cloud and network operators, who demand shorter lead times and product roadmaps aligned with capacity expansion cycles.

Taken together, these shifts require companies to balance the competing demands of innovation speed, yield improvement, and long-term reliability. The firms best positioned to benefit are those that can translate laboratory performance into manufacturable designs, while simultaneously demonstrating clear cost-to-performance advantages in real network deployments.

Understanding how recent tariff measures are driving regional qualification, supply diversification, and resilience investments across the AWG chip value chain

Recent trade policy developments have introduced another layer of complexity into global supply chains for photonic components, with tariffs and regulatory measures affecting cost structures and sourcing decisions. The imposition of targeted tariffs and related trade measures has incentivized suppliers and integrators to reassess their manufacturing footprints and inventory policies. In response, some manufacturers have accelerated investments in regional foundry partnerships and qualification flows to minimize exposure to cross-border levies and to preserve lead-time predictability for customers.

These adjustments involve more than relocation; they require replication of process know-how, tight vendor qualification cycles, and revalidation of optical performance across new line processes. Transitioning volume from one foundry to another or from one region to another typically introduces short-term cost headwinds, yields uncertainty, and logistical friction. Over time, however, a diversified supplier base can reduce the operational risk associated with policy volatility, and it can enable closer alignment with regional demand patterns for cloud hyperscalers and telecom operators.

Ultimately, the cumulative impact of tariffs and trade measures is leading to a bifurcated approach: near-term supply chain defensive moves to secure continuity, combined with longer-term strategic investments in local capability and design portability. Decision-makers should therefore evaluate procurement strategies not only on unit economics but also on resilience metrics that capture lead-time risk, qualification overhead, and the scalability of alternative process flows.

How layered segmentation across application, material, integration, wavelength, end-user, and deployment environment reveals practical product and commercialization pathways

A nuanced segmentation view reveals where technical requirements and commercial demand intersect across application, chip type, material, integration level, wavelength band, end-user industry, and deployment environment. When considered by application, solutions span add/drop modules, CWDM mux/demux, and DWDM mux/demux; add/drop modules themselves bifurcate into fixed optical add/drop multiplexers and reconfigurable optical add/drop multiplexers, while DWDM mux/demux covers both fixed AWG and tunable AWG architectures. This application-driven lens clarifies that network operators targeting dynamic bandwidth allocation will prioritize reconfigurable and tunable AWG capabilities, whereas cost-sensitive access deployments often favor fixed-function components.

By chip type there is a clear differentiation between reflective AWG and transmissive AWG designs, each carrying distinct trade-offs in complexity, footprint, and insertion loss. Waveguide material choices further stratify the landscape: indium phosphide remains favored for integrated active functionality, while silica delivers low-loss passive routing; silicon photonics and silicon oxynitride platforms expand the options, with silicon photonics splitting into silicon nitride photonics and silicon-on-insulator sub-paths that balance loss, integration density, and thermal tuning characteristics. Integration level is equally critical, with co-packaged, hybrid, and monolithic approaches offering different balances of performance and manufacturability; hybrid integrations often use flip-chip or wire-bond techniques to marry active and passive die, enabling flexible assembly strategies.

Wavelength band segmentation-spanning C-band, L-band, O-band, and S-band-drives component choices based on transmission windows, fiber characteristics, and system interoperability. End-user industry segmentation highlights distinct purchasing patterns and technical priorities across cloud service providers, data center operators, enterprises, and telecom operators, with cloud service provider needs themselves differentiating between hyperscalers and managed service providers. Finally, deployment environment-access, data center, long-haul, and metro-shapes robustness requirements, thermal management expectations, and the acceptable footprint for optical modules. Integrating these segmentation lenses provides a practical framework for product planning, partnership selection, and go-to-market alignment.

How distinct regional demand drivers and industrial capabilities in the Americas, EMEA, and Asia-Pacific are defining differentiated go-to-market and sourcing strategies

Regional dynamics play a decisive role in commercialization strategies and supply chain decisions. In the Americas, strong demand from hyperscale cloud operators and data center ecosystems is driving more aggressive adoption of high-density DWDM solutions and advanced co-packaged optics, supported by a mature ecosystem of system integrators and select foundries that can rapidly qualify new designs. Capital allocation by operators in this region frequently prioritizes rapid capacity expansion and modular system upgrades, creating windows of opportunity for suppliers that can demonstrate quick qualification cycles and reliable ramp characteristics.

Europe, Middle East & Africa presents a more heterogeneous landscape where regulatory frameworks, spectrum policies, and legacy network structures influence adoption rates. Network operators in this region often require extended interoperability and long-term supplier roadmaps, which increases the value of proven reliability and multi-vendor compatibility. Local industrial policy in parts of the region is also encouraging onshoring of critical components, influencing where suppliers establish partnerships and qualification labs.

Asia-Pacific combines both large-scale manufacturing capability and massive internal demand, producing a dual effect: it is a major center for foundry services and component assembly while also representing one of the fastest-growing markets for upgraded metro, long-haul, and data center interconnects. Regional supply chains here can deliver scale quickly, but buyers must manage geopolitical and logistical variability. Understanding these regional nuances allows firms to calibrate investment in local partnerships, qualification timelines, and inventory strategies to better match customer buying cycles.

Why firms that integrate deep device IP, scalable manufacturing, and packaging excellence are setting competitive benchmarks in the AWG chip ecosystem

The competitive landscape for AWG components is characterized by a mix of specialized photonics firms, integrated device manufacturers, and vertically integrated system suppliers. Leading product strategies combine differentiated IP in device physics with disciplined process control and robust packaging capabilities. Firms that succeed typically invest in cross-functional capabilities-optical design, waveguide process engineering, thermal management, and mechanical packaging-while fostering strong foundry and assembly partnerships that accelerate qualification across multiple end markets.

Strategic routes to market vary: some companies focus on supplying optical subsystems to telecom vendors, while others aim to embed AWG devices into transceiver platforms for hyperscalers and cloud operators. Strategic partnerships and licensing agreements are common approaches to expand addressable markets without incurring the full cost of facility expansion. Another recurring theme is the emphasis on yield improvement programs and scalable test flows, which directly impact time-to-volume and total cost of integration. Competitive differentiation also emerges through software-driven management and calibration tools that complement hardware capabilities, enabling better in-field performance tuning and lifetime optimization.

For suppliers and integrators, the near-term imperative is to convert advanced prototypes into reproducible manufacturing outputs and to demonstrate consistent performance in real network conditions. This requires aligning R&D roadmaps with customer validation cycles and ensuring that commercial agreements reflect realistic qualification cadences and mutual performance metrics.

Implement process-portable designs, modular product families, and resilient sourcing while aligning roadmaps with customer validation cycles to accelerate adoption

Industry leaders should adopt a multi-pronged approach that balances near-term commercialization with long-term resilience. First, prioritize design philosophies that are process-portable: ensure that device layouts and mask strategies can be transferred between foundries with manageable requalification overhead. This reduces single-source risk and accelerates responsiveness to regional demand shifts. Second, invest in a modular product architecture that allows fixed and tunable AWG variants to share common sub-assemblies, lowering NRE per product family while enabling tailored customer options.

Third, build robust qualification and supply continuity plans that incorporate regional partnerships and inventory buffers for critical substrates and passive components. These plans should be stress-tested against tariff and logistics scenarios to gauge lead-time and cost sensitivity. Fourth, collaborate closely with system integrators and hyperscale customers to co-develop reference platforms and interoperability test suites, shortening the validation cycle and improving adoption rates. Fifth, focus on test automation and in-line metrology to compress yield ramp timelines and to reduce per-unit test cost; such investments yield outsized returns during scale-up phases.

Finally, maintain a disciplined roadmap that sequences features to market demand-prioritizing thermal stability, insertion loss, and channel plan flexibility where customers cite the highest operational impact-and complement hardware advances with calibration and monitoring software that improves field reliability and network uptime.

A reproducible and transparent research approach combining expert interviews, technical validation, and cross-referenced device-level performance comparisons

The research approach underlying this analysis combined primary engagements, technical document review, and cross-referenced industry data to ensure robustness and reproducibility. Primary inputs included structured interviews with device engineers, packaging specialists, procurement leads from end-user organizations, and supply chain managers, providing first-hand perspectives on qualification hurdles, integration priorities, and procurement timelines. These qualitative inputs were triangulated with equipment-level process documentation, published technical papers, and foundry capability disclosures to validate material and process assertions.

Quantitative inputs focused on performance metrics and qualification milestones rather than aggregate commercial figures. Test data was normalized to common optical performance parameters-such as insertion loss, channel isolation, polarization-dependent loss, and thermal tuning range-to enable consistent comparisons across material platforms and integration approaches. The methodology emphasized traceability: each analytical conclusion is mapped back to source inputs and to the assumptions applied during comparative analysis.

To ensure impartiality, multiple independent sources were used where available, and divergent viewpoints from suppliers and end users were reconciled through follow-up interviews. The report's segmentation framework was validated through workshops with technical and commercial stakeholders to confirm relevance and to surface any emerging sub-segments requiring further study.

Synthesize device innovation, manufacturing readiness, and regional supply resilience to convert AWG chip potential into durable network deployments

In conclusion, arrayed waveguide grating chips occupy a pivotal role in the evolution of optical networks, offering a spectrum of design pathways that can be tuned to distinct commercial and technical priorities. The confluence of co-packaging trends, material innovation, and changing procurement behaviors underscores the need for suppliers to demonstrate manufacturability, process portability, and rapid qualification capabilities. Supply chain resilience and regional strategy have become as consequential as device performance in determining commercial outcomes.

For product and business leaders, the challenge is to align roadmaps with operator needs-differentiating between static access markets that benefit from cost-effective fixed solutions and dynamic cloud or metro deployments that demand tunability and reconfigurability. By combining disciplined engineering practices, strong foundry partnerships, and customer-centric validation programs, firms can reduce time to meaningful deployments and increase the chance of long-term adoption. The path forward rewards organizations that treat AWG chips not merely as components but as strategic enablers of next-generation photonic systems.

Product Code: MRR-7A380DA7C2AE

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Arrayed Waveguide Grating Chips Market, by Chip Type

  • 8.1. Reflective AWG
  • 8.2. Transmissive AWG

9. Arrayed Waveguide Grating Chips Market, by Waveguide Material

  • 9.1. InP
  • 9.2. Silica
  • 9.3. Silicon Photonics
    • 9.3.1. SiN Photonics
    • 9.3.2. SOI
  • 9.4. SiON

10. Arrayed Waveguide Grating Chips Market, by Integration Level

  • 10.1. Co-Packaged
  • 10.2. Hybrid
    • 10.2.1. Flip-Chip
    • 10.2.2. Wire-Bond
  • 10.3. Monolithic

11. Arrayed Waveguide Grating Chips Market, by Wavelength Band

  • 11.1. C-Band
  • 11.2. L-Band
  • 11.3. O-Band
  • 11.4. S-Band

12. Arrayed Waveguide Grating Chips Market, by End-User Industry

  • 12.1. Cloud Service Providers
    • 12.1.1. Hyperscalers
    • 12.1.2. Managed Service Providers
  • 12.2. Data Center Operators
  • 12.3. Enterprises
  • 12.4. Telecom Operators

13. Arrayed Waveguide Grating Chips Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Arrayed Waveguide Grating Chips Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Arrayed Waveguide Grating Chips Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Arrayed Waveguide Grating Chips Market

17. China Arrayed Waveguide Grating Chips Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Accelink Technologies Co., Ltd.
  • 18.6. ADVA Optical Networking SE
  • 18.7. Anritsu Corporation
  • 18.8. Broadcom Inc.
  • 18.9. EFFECT Photonics B.V.
  • 18.10. Enablence Technologies Inc.
  • 18.11. Fujitsu Optical Components Limited
  • 18.12. HUAWEI TECHNOLOGIES CO., LTD.
  • 18.13. Infinera Corporation
  • 18.14. Intel Corporation
  • 18.15. Kaiam Corporation
  • 18.16. NeoPhotonics Corporation
  • 18.17. POET Technologies Inc.
  • 18.18. Ranovus Inc.
  • 18.19. Santec Corporation
  • 18.20. Sicoya GmbH
  • 18.21. Skorpios Technologies, Inc.
  • 18.22. Source Photonics, Inc.
  • 18.23. VIAVI Solutions Inc.
Product Code: MRR-7A380DA7C2AE

LIST OF FIGURES

  • FIGURE 1. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 13. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY REFLECTIVE AWG, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY REFLECTIVE AWG, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY REFLECTIVE AWG, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY TRANSMISSIVE AWG, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY TRANSMISSIVE AWG, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY TRANSMISSIVE AWG, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICA, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICA, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICA, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SIN PHOTONICS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SIN PHOTONICS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SIN PHOTONICS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SOI, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SOI, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SOI, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CO-PACKAGED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CO-PACKAGED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CO-PACKAGED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY FLIP-CHIP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY FLIP-CHIP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY FLIP-CHIP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WIRE-BOND, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WIRE-BOND, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WIRE-BOND, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY MONOLITHIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY MONOLITHIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY MONOLITHIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY C-BAND, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY C-BAND, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY C-BAND, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY L-BAND, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY L-BAND, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY L-BAND, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY O-BAND, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY O-BAND, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY O-BAND, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY S-BAND, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY S-BAND, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY S-BAND, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYPERSCALERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYPERSCALERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYPERSCALERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY MANAGED SERVICE PROVIDERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY MANAGED SERVICE PROVIDERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY MANAGED SERVICE PROVIDERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY DATA CENTER OPERATORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY DATA CENTER OPERATORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY DATA CENTER OPERATORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY ENTERPRISES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY ENTERPRISES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY ENTERPRISES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY TELECOM OPERATORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY TELECOM OPERATORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY TELECOM OPERATORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 80. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 81. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 82. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 83. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 84. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 85. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 86. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 87. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 88. AMERICAS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 89. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 91. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 92. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 93. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 94. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 95. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 96. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 97. NORTH AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 98. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 99. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 100. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 101. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 102. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 103. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 104. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 105. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 106. LATIN AMERICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 110. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 111. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 112. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 113. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 114. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 115. EUROPE, MIDDLE EAST & AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 116. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 117. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 118. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 119. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 120. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 121. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 122. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 123. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 124. EUROPE ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 125. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 126. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 127. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 128. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 129. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 130. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 131. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 132. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 133. MIDDLE EAST ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 134. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 135. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 136. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 137. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 138. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 139. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 140. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 141. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 142. AFRICA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 143. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 144. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 145. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 146. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 147. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 148. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 149. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 150. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 151. ASIA-PACIFIC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 152. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 153. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 155. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 156. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 157. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 158. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 159. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 160. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 161. ASEAN ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 162. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 163. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 164. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 165. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 166. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 167. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 168. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 169. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 170. GCC ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 171. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 172. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 173. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 174. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 175. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 176. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 177. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 178. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 179. EUROPEAN UNION ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 180. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 181. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 182. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 183. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 184. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 185. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 186. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 187. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 188. BRICS ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 189. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 190. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 191. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 192. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 193. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 194. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 195. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 196. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 197. G7 ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 198. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 199. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 200. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 201. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 202. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 203. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 204. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 205. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 206. NATO ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 207. GLOBAL ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 208. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 209. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 210. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 211. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 212. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 213. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 214. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 215. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 216. UNITED STATES ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
  • TABLE 217. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 218. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CHIP TYPE, 2018-2032 (USD MILLION)
  • TABLE 219. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVEGUIDE MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 220. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY SILICON PHOTONICS, 2018-2032 (USD MILLION)
  • TABLE 221. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY INTEGRATION LEVEL, 2018-2032 (USD MILLION)
  • TABLE 222. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY HYBRID, 2018-2032 (USD MILLION)
  • TABLE 223. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY WAVELENGTH BAND, 2018-2032 (USD MILLION)
  • TABLE 224. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY END-USER INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 225. CHINA ARRAYED WAVEGUIDE GRATING CHIPS MARKET SIZE, BY CLOUD SERVICE PROVIDERS, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!