Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925202

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925202

Commercial Aircraft Engine Forging Market by Engine Type, Material, Forging Type, Component, End User, Distribution Channel - Global Forecast 2026-2032

PUBLISHED:
PAGES: 194 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Commercial Aircraft Engine Forging Market was valued at USD 3.53 billion in 2025 and is projected to grow to USD 3.76 billion in 2026, with a CAGR of 5.75%, reaching USD 5.22 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 3.53 billion
Estimated Year [2026] USD 3.76 billion
Forecast Year [2032] USD 5.22 billion
CAGR (%) 5.75%

An authoritative introduction to the strategic drivers, manufacturing imperatives, and regulatory pressures reshaping commercial aircraft engine forging in the contemporary aerospace ecosystem

The commercial aircraft engine forging sector stands at the intersection of advanced manufacturing, materials science, and stringent safety regulation, and its evolution will influence aerospace manufacturing competitiveness for years to come. Demand dynamics are no longer driven solely by airline fleet growth; instead, a layered set of forces including aging fleets, accelerated aftermarket activity, certification cycles, and the push for lighter, more fuel-efficient propulsion systems shape priorities for both OEMs and MRO providers. These factors converge with rising supplier expectations for traceability, digital quality assurance, and lifecycle support to produce a complex operating environment where reliability and cost-efficiency must coexist.

Innovation in forging processes now accompanies a renewed focus on resilience. Near-net-shape techniques, more sophisticated quality inspection methods, and closer integration between engineering design and manufacturing reduce lead times and scrap rates while enabling the use of higher-performance alloys. Simultaneously, regulatory compliance and aerospace certification regimes maintain a steady influence on materials selection and process validation. As a result, decision-makers must balance the capital intensity of advanced forging capability against the commercial imperative to maintain supply continuity and meet rigorous safety standards.

A detailed exploration of the transformative technological advancements, supply chain realignments, and sustainability imperatives driving strategic change across forging operations and supplier relationships

The landscape for commercial aircraft engine forging has shifted rapidly as production modernization meets supply chain realignment and evolving alloy technology. Automation and digitalization now penetrate every stage of the forging lifecycle, from predictive maintenance of presses to in-process monitoring that ensures microstructural consistency. Additive manufacturing complements forging by enabling complex near-net shapes and preforms that reduce machining waste, while advanced heat-treatment and cryogenic processes extract higher performance from nickel- and titanium-based alloys. Together these advances compress development cycles and elevate component performance requirements.

Alongside technological progress, strategic shifts in sourcing and partnerships are redefining value chains. Buyers and suppliers increasingly pursue collaborative engineering agreements, co-investment in capacity, and dual-sourcing strategies to mitigate geopolitical and materials risk. Environmental and sustainability expectations also drive change: manufacturers prioritize scrap reduction, energy efficiency in forging operations, and lifecycle emissions from materials. Consequently, organizations that combine process innovation with resilient sourcing and sustainability planning are positioned to capture both reliability and competitive advantage as the industry transitions.

A comprehensive assessment of how cumulative United States tariff actions have reshaped procurement strategies, supplier economics, and capacity planning throughout the forging value chain by 2025

Tariff measures and trade policy actions have left a lasting imprint on the commercial aircraft engine forging value chain by altering material flows, supplier economics, and strategic procurement choices. Historically introduced measures targeting steel and aluminum imports have driven buyers to reassess sourcing strategies, and the cumulative effect by 2025 has been a measurable shift toward diversified procurement and localized capacity expansion for critical forgings. Compliance burdens and documentation requirements increased the administrative load on importers and incentivized investments in traceable, certified domestic supply lines to ensure continuity for high-consequence aerospace components.

The tariff environment also accelerated tactical responses within procurement and engineering teams. Material substitution, where feasible without compromising certification, became a more prominent mitigation technique. Longer-term decisions included nearshoring of certain manufacturing stages to insulate production from cross-border tariffs and to reduce lead-time risk. Pricing pass-through to OEM contracts and aftermarket services created tension between cost containment and supplier sustainability, prompting renegotiation of commercial terms and a closer alignment between cost engineering and supply strategy. Ultimately, trade measures reshaped risk management philosophies and prompted investment decisions that will influence capacity, certification timelines, and supplier networks for the foreseeable future.

In-depth segmentation insights explaining how engine configurations, end-user roles, material choices, forging processes, component functions, distribution channels, and supplier tiers collectively determine competitive positioning

Understanding segmentation provides a nuanced view of material selection, process suitability, and commercial dynamics across the forging ecosystem. When analyzed by engine type, the different operational regimes of turbofan, turbojet, turboprop, and turboshaft systems drive distinct requirements for part geometry, cycle life, and thermal tolerance; for example, turbofan fan cases prioritize dimensional stability and weight reduction, while turbine discs demand superior creep and fatigue resistance. End-user distinctions between original equipment manufacturers and maintenance, repair, and overhaul providers explain divergent purchasing rhythms and qualification needs, as OEMs emphasize long development lead times and integrated design-for-manufacture, whereas MROs focus on turnaround speed and component refurbishment pathways.

Material segmentation clarifies why aluminum alloy, nickel alloy, steel, and titanium alloy choices are not interchangeable but instead reflect tradeoffs among density, strength at temperature, corrosion resistance, and machinability. Forging type also matters: closed-die techniques facilitate tighter tolerances and higher-volume repeatability suited to certain compressor disks and turbine discs, while open-die forging retains advantages for very large shafts or bespoke geometries that require incremental deformation. Component-focused segmentation highlights differentiated requirements across combustion chamber, compressor disk, fan case, shaft, and turbine disc parts, each of which imposes specific metallurgical and process qualification constraints. Distribution-channel and tier segmentation further inform go-to-market strategies, as direct sales relationships often accompany high-engineering integration and qualification commitments, while distributor channels enable broader aftermarket reach. Tier classification into Tier 1, Tier 2, and Tier 3 suppliers clarifies how risk, certification burden, and pricing power cascade through the supply chain, influencing where investments in capability and certification yield the greatest strategic return.

A strategic regional analysis of capacity, certification complexity, and supply chain strengths that explains how Americas, Europe, Middle East & Africa, and Asia-Pacific clusters influence competitive strategy and investment priorities

Regional dynamics materially affect where capacity, expertise, and aftermarket services cluster, and these patterns shape strategic choices across the sector. In the Americas, a strong combination of established aerospace OEMs, deep MRO networks, and access to domestic raw material sources supports investment in high-capacity forging equipment and certification capabilities. This region's regulatory environment and supplier ecosystem favor vertically integrated approaches and investments in automation to protect margins under cost pressure.

In Europe, Middle East & Africa, advanced engineering competencies, stringent certification regimes, and a complex regulatory landscape promote specialization in high-value alloy components and close collaboration between material scientists and manufacturers. This region's emphasis on sustainability and emissions reduction encourages process efficiencies and energy optimization in forging operations. In the Asia-Pacific, scale advantages, expanding MRO capacity, and an accelerating base of skilled manufacturing talent combine to create a competitive environment for volume manufacturing and rapid qualification of new suppliers. Each regional cluster presents different opportunities and tradeoffs for firms seeking to balance speed, cost, certification complexity, and strategic proximity to customers.

Actionable corporate intelligence revealing how forging market leaders combine capital investment, deep engineering partnerships, and digital quality systems to secure high-value OEM and aftermarket contracts

Leading companies in the commercial aircraft engine forging space are adopting integrated strategies that blend capability investment with ecosystem partnerships to secure long-term competitiveness. Firms that pair capital expenditure on modern forging presses, heat-treatment furnaces, and closed-loop quality systems with robust engineering services position themselves to win OEM contracts that reward repeatable precision and traceable supply chains. Others specialize by serving the aftermarket with rapid-response MRO solutions, certification-backed repair capabilities, and component life-extension services designed to maximize return on expensive rotating parts.

Across the industry, partnerships between material suppliers, forging specialists, and engine integrators accelerate qualification timelines and reduce technical risk. Strategic entrants focus on certification breadth, moving beyond single-part capabilities to offer end-to-end supply of mission-critical components, while incumbent suppliers defend their positions through process reproducibility, proprietary metallurgy know-how, and long-standing customer relationships. Companies that invest in digital quality systems, workforce upskilling, and environmental performance distinguish themselves in procurement evaluations that increasingly weigh risk mitigation and lifecycle stewardship alongside unit cost.

Practical and prioritized recommendations designed to help forging manufacturers and suppliers reduce supply risk, accelerate qualification, and capture higher-value OEM and aftermarket opportunities

Industry leaders should prioritize a set of coordinated actions that reduce risk, accelerate qualification, and improve cost performance across the forging lifecycle. First, diversify raw material sources and secure long-term agreements that include quality assurance provisions and joint risk-sharing mechanisms, enabling procurement teams to reduce exposure to single points of failure without sacrificing aerospace-grade certification. Second, invest in digital process controls and in-line nondestructive evaluation technologies to shorten qualification cycles and reduce rework, thereby improving throughput and consistency while supporting traceability requirements.

Third, expand partnerships with engine integrators and material specialists to co-develop alloys and near-net-shape preforms that lower machining intensity and material waste. Fourth, adopt a tiered inventory and capacity strategy that balances critical spares with flexible manufacturing capacity, enabling rapid response to MRO demand spikes without incurring excessive holding costs. Fifth, commit to workforce development initiatives that combine hands-on forging skills with digital literacy to support automated systems and predictive maintenance. Together, these actions create a pragmatic playbook for firms aiming to enhance resilience, capture higher-value contracts, and reduce total lifecycle cost for mission-critical engine components.

A transparent overview of the research approach combining primary interviews, process mapping, metallurgical evaluation, and certification analysis to produce validated operational insights and strategic implications

This research synthesizes primary engagement with industrial leaders, materials scientists, and supply chain specialists together with a rigorous review of process-level engineering literature, certification standards, and publicly available policy documents. Interviews with plant operations managers and quality engineers provided first-hand insight into throughput constraints, alloy-specific process windows, and the operational impact of in-line inspection techniques. Complementing primary sources, technical reports and standards documentation contributed to an understanding of certification pathways and metallurgical acceptance criteria for high-temperature rotating parts.

Analytical methods included comparative process mapping across forging types, metallurgical evaluation of alloy tradeoffs, and scenario analysis for supply chain disruption. Triangulation ensured that insights reflected operational realities rather than theoretical models alone. Limitations include variation in plant-level data availability and the proprietary nature of some material formulations, which required anonymized benchmarking and sensitivity analyses. Results were validated through peer review by industry experts and through cross-checking against observed procurement and certification practices to ensure relevance and reliability for decision-makers.

A concise synthesis of strategic imperatives and long-term priorities that frames why integrated investments in capability, materials, and supply chain resilience will determine competitive advantage in forging

The commercial aircraft engine forging sector is navigating an era of consequential change characterized by technological innovation, evolving trade policy, and shifting regional capabilities. Organizations that excel will be those that integrate advanced process control, material science, and supply chain resilience into a cohesive operating model. Short-term pressures from input cost variability and certification timelines will coexist with long-term opportunities created by lighter alloys, near-net-shape manufacturing, and increased aftermarket activity driven by fleet modernization and life-extension initiatives.

Decision-makers must therefore treat investment in forging capability as a strategic imperative rather than a tactical cost center. By aligning procurement, engineering, and operations around a shared set of priorities - reliability, traceability, and continuous improvement - firms can navigate policy-driven volatility while capturing upside from technological change. The imperative is clear: those who act decisively to modernize processes, diversify supply, and deepen integration with engine manufacturers and MRO networks will secure a durable competitive position in an industry where performance, safety, and supply continuity define value.

Product Code: MRR-F774F6336AD2

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Commercial Aircraft Engine Forging Market, by Engine Type

  • 8.1. Turbofan
  • 8.2. Turbojet
  • 8.3. Turboprop
  • 8.4. Turboshaft

9. Commercial Aircraft Engine Forging Market, by Material

  • 9.1. Aluminum Alloy
  • 9.2. Nickel Alloy
  • 9.3. Steel
  • 9.4. Titanium Alloy

10. Commercial Aircraft Engine Forging Market, by Forging Type

  • 10.1. Closed Die
  • 10.2. Open Die

11. Commercial Aircraft Engine Forging Market, by Component

  • 11.1. Combustion Chamber
  • 11.2. Compressor Disk
  • 11.3. Fan Case
  • 11.4. Shaft
  • 11.5. Turbine Disc

12. Commercial Aircraft Engine Forging Market, by End User

  • 12.1. Mro
  • 12.2. Oem

13. Commercial Aircraft Engine Forging Market, by Distribution Channel

  • 13.1. Direct
  • 13.2. Distributor

14. Commercial Aircraft Engine Forging Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Commercial Aircraft Engine Forging Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Commercial Aircraft Engine Forging Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. United States Commercial Aircraft Engine Forging Market

18. China Commercial Aircraft Engine Forging Market

19. Competitive Landscape

  • 19.1. Market Concentration Analysis, 2025
    • 19.1.1. Concentration Ratio (CR)
    • 19.1.2. Herfindahl Hirschman Index (HHI)
  • 19.2. Recent Developments & Impact Analysis, 2025
  • 19.3. Product Portfolio Analysis, 2025
  • 19.4. Benchmarking Analysis, 2025
  • 19.5. Arconic Inc
  • 19.6. ATI Inc
  • 19.7. Bharat Forge Limited
  • 19.8. Carlton Forge Works
  • 19.9. Chalco Titanium Co Ltd
  • 19.10. China National Precision Forging Co Ltd
  • 19.11. Consolidated Industries Inc
  • 19.12. Doncasters Group Limited
  • 19.13. Frisa Industrias S A de C V
  • 19.14. Howmet Aerospace Inc
  • 19.15. IHI Corporation
  • 19.16. Independent Forgings & Alloys Ltd
  • 19.17. Kobe Steel Ltd
  • 19.18. LISI Aerospace
  • 19.19. Mitsubishi Heavy Industries Ltd
  • 19.20. MTU Aero Engines AG
  • 19.21. Nippon Steel & Sumitomo Metal Corporation
  • 19.22. Otto Fuchs KG
  • 19.23. Precision Castparts Corp
  • 19.24. Scot Forge Company
  • 19.25. SIFCO Industries Inc
  • 19.26. Sumitomo Corporation
  • 19.27. VSMPO-AVISMA Corporation
  • 19.28. Weldaloy Specialty Forgings
Product Code: MRR-F774F6336AD2

LIST OF FIGURES

  • FIGURE 1. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 13. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 14. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOFAN, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOFAN, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOFAN, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOJET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOJET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOJET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOPROP, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOPROP, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOPROP, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOSHAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOSHAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBOSHAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ALUMINUM ALLOY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ALUMINUM ALLOY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ALUMINUM ALLOY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY NICKEL ALLOY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY NICKEL ALLOY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY NICKEL ALLOY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY STEEL, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY STEEL, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY STEEL, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TITANIUM ALLOY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TITANIUM ALLOY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TITANIUM ALLOY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY CLOSED DIE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY CLOSED DIE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY CLOSED DIE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY OPEN DIE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY OPEN DIE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY OPEN DIE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMBUSTION CHAMBER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMBUSTION CHAMBER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMBUSTION CHAMBER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPRESSOR DISK, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPRESSOR DISK, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPRESSOR DISK, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FAN CASE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FAN CASE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FAN CASE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY SHAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY SHAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY SHAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBINE DISC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBINE DISC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY TURBINE DISC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MRO, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MRO, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MRO, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY OEM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY OEM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY OEM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DIRECT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DIRECT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DIRECT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 66. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 67. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 68. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 69. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 70. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 71. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 72. AMERICAS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 73. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 74. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 75. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 76. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 77. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 78. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 79. NORTH AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 80. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 81. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 82. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 83. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 84. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 85. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 86. LATIN AMERICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 87. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 88. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 89. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 90. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 91. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 92. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 93. EUROPE, MIDDLE EAST & AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 94. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 95. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 96. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 97. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 98. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 99. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 100. EUROPE COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 101. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 102. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 103. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 104. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 105. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 106. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 107. MIDDLE EAST COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 108. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 109. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 110. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 111. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 112. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 113. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 114. AFRICA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 115. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 116. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 117. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 118. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 119. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 120. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 121. ASIA-PACIFIC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 122. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 123. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 124. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 125. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 126. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 127. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 128. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 129. ASEAN COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 130. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 131. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 132. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 133. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 134. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 135. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 136. GCC COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 137. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 138. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 139. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 140. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 141. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 142. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 143. EUROPEAN UNION COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 144. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 145. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 146. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 147. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 148. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 149. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 150. BRICS COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 151. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 152. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 153. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 154. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 155. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 156. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 157. G7 COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 158. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 159. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 160. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 161. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 162. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 163. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 164. NATO COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 165. GLOBAL COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 166. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 167. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 168. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 169. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 170. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 171. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 172. UNITED STATES COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 173. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 174. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY ENGINE TYPE, 2018-2032 (USD MILLION)
  • TABLE 175. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 176. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY FORGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 177. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY COMPONENT, 2018-2032 (USD MILLION)
  • TABLE 178. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY END USER, 2018-2032 (USD MILLION)
  • TABLE 179. CHINA COMMERCIAL AIRCRAFT ENGINE FORGING MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!