Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925411

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925411

Discrete SiC Power Devices Market by Product Type, Power Rating, Packaging Type, Application - Global Forecast 2026-2032

PUBLISHED:
PAGES: 196 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Discrete SiC Power Devices Market was valued at USD 1.76 billion in 2025 and is projected to grow to USD 2.10 billion in 2026, with a CAGR of 19.44%, reaching USD 6.12 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 1.76 billion
Estimated Year [2026] USD 2.10 billion
Forecast Year [2032] USD 6.12 billion
CAGR (%) 19.44%

The evolution of discrete silicon carbide (SiC) power devices represents one of the most consequential shifts in power electronics over the past decade, bringing semiconductor-grade robustness to high-voltage switching with materially lower conduction and switching losses. This introduction synthesizes technical drivers, cross-industry demand signals, and supply-side dynamics to frame how SiC discrete devices are reshaping architectures from power adapters to electric vehicle traction inverters. By isolating the core attributes of SiC-higher critical electric field, wider bandgap, and superior thermal conductivity-engineers and decision-makers can better understand why this semiconductor class is displacing legacy silicon solutions in efficiency-critical applications.

Over the last several product cycles, device-level innovations have reduced on-resistance, improved gate reliability, and enabled more compact packaging options. These advances have unlocked new system-level trade-offs: designers can now pursue higher switching frequencies, reduce magnetics footprint, and achieve tighter thermal management with less derating. Consequently, system architects are rethinking converter topologies, integrating SiC mosfets and Schottky diodes to realize greater power density and overall system efficiency. This introduction sets the stage for deeper analysis by outlining the technical and commercial context in which product, application, power rating, and packaging choices will determine competitive differentiation across automotive, industrial, renewable energy, telecom, and consumer electronics segments.

How converging advances in wafer technology, packaging, and application demand are rapidly transforming the discrete SiC power device ecosystem and value chains

The landscape for discrete SiC power devices is undergoing transformative shifts driven by converging technology advances and accelerating application demand. On the technology front, incremental improvements in wafer quality, edge termination, and gate oxide processes have elevated device reliability and manufacturability, enabling higher yields and lower defect densities at increasingly competitive cost per function. Simultaneously, packaging innovations, including surface-mount formats and improved thermal interfaces, have enabled easier integration into compact power assemblies, enabling designers to extract the full benefits of SiC without prohibitive system redesign.

From a demand perspective, several end-use applications are accelerating adoption. Electric vehicles and fast chargers prioritize energy-dense, high-efficiency power stages that directly benefit from SiC's lower switching losses and higher temperature operation. Industrial power supplies and data center equipment are re-architecting for efficiency gains and reduced cooling overhead. Renewable energy systems, particularly inverters and battery energy storage converters, lean on SiC to boost conversion efficiency and reduce system-level costs associated with heat sinking and passive component size. In parallel, telecom infrastructure upgrades and high-performance consumer power adapters are integrating SiC to meet tightening efficiency standards and thermal constraints.

The supply chain is adapting to these demands through diversified wafer sourcing, vertical integration of epitaxy and device fabrication, and strategic capacity expansions. Foundry and captive manufacturing models coexist, with some firms emphasizing design-for-manufacture to optimize SiC-specific process windows while others pursue integrated device-and-substrate approaches. Policy and regulatory drivers, including emissions targets and energy-efficiency mandates, are reinforcing the business case for SiC conversion, prompting procurement teams to re-evaluate total cost of ownership and lifecycle reliability rather than focusing solely on bill-of-materials cost. Taken together, these shifts signal a maturing ecosystem where technical performance, supply resilience, and regulatory alignment determine winners and losers in SiC adoption.

Analyzing how United States tariff developments through 2025 have reshaped sourcing strategies, supplier diversification, and design choices across the SiC component ecosystem

The introduction of cumulative tariffs and trade policy adjustments originating from the United States through 2025 has materially altered supplier calculus, procurement strategies, and global supply chain resilience for discrete SiC power devices. Tariff measures have increased landed cost volatility for components sourced across key production hubs, prompting buyers to reassess supplier portfolios and qualification timelines. As organizations adjust, procurement teams are placing greater emphasis on near-shore sourcing alternatives, diversified supplier panels, and longer-term contractual commitments to manage exposure to tariff-driven cost swings. Even when direct transit costs are moderate, the indirect commercial impacts including delayed qualification of alternative suppliers and the administrative burden of tariff compliance have influenced time-to-implementation for SiC designs.

Consequently, manufacturers and OEMs have shifted sourcing strategies to reduce dependency on single-region supply. This includes increased engagement with domestic and regional manufacturers, negotiating multi-year capacity reservations, and investing in vendor development programs to accelerate local qualifications. In parallel, some suppliers have modified manufacturing footprints, either by expanding production in lower-tariff jurisdictions or by pursuing integrated supply arrangements that internalize key processes to mitigate cross-border cost impacts. These structural responses affect engineering roadmaps as teams balance performance goals with procurement realities, leading to changes in component selection, acceptance of alternate power ratings or packaging types, and phased integration approaches that prioritize modules with lower supply-chain risk.

Regulatory and tariff dynamics also influence investment patterns across the value chain. Capital allocation decisions for capacity expansion or R&D are increasingly evaluated against scenario analyses that incorporate tariff persistence and policy shifts. For systems integrators, the cumulative effect manifests as a stronger focus on lifecycle cost optimization, supplier risk scoring, and design adaptability to accommodate multiple discrete device form factors and power ratings. In short, tariff developments through 2025 have accelerated strategic moves toward supply diversification and design flexibility, and they continue to shape how industry actors prioritize efficiency gains against procurement certainty.

Deep segmentation insights linking device architecture, application demands, power ratings, and packaging choices to practical design and procurement trade-offs for SiC integration

A nuanced segmentation view reveals how discrete SiC device choices vary by product architecture, application context, power handling requirements, and packaging format. When considering product type, engineers evaluate BJT, JFET, MOSFET, and Schottky diode variants for their distinct switching characteristics and conduction profiles; MOSFETs and Schottky diodes increasingly dominate fast-switching topologies due to favorable switching loss profiles, while JFET and BJT concepts persist in niche high-voltage or ruggedness-driven designs. Application segmentation further refines component selection: automotive programs prioritize DC-DC converters, EV chargers, and onboard traction inverters that demand robust thermal cycling endurance and qualification to automotive standards; consumer electronics applications emphasize compact power adapters and power management IC-enabled subsystems where surface-mount SiC solutions drive miniaturization and thermal performance; industrial power supply applications span industrial drives, server power supplies, and uninterruptible power supplies, each imposing different reliability and power-density trade-offs; rail and marine use cases, such as auxiliary power supplies and traction drives, require high-voltage ruggedness and long operational lifetimes under harsh environment conditions; renewable energy deployments in battery energy storage, solar inverters, and wind turbine converters demand long-term reliability and low conduction losses to maximize system efficiency; and telecom and datacom applications-from base station power to data center power-favor devices that support high frequency operation and reduced cooling overhead.

Power rating segmentation further influences architecture and component selection. Up to 600 V devices are typically chosen for consumer and some industrial power stages where size and switching speed are paramount. Components in the 601-1200 V band serve as the backbone for EV onboard inverters, fast chargers, and many renewable inverters, offering a balance between blocking voltage and conduction efficiency. Above 1200 V devices address demanding traction, high-voltage renewable, and certain industrial converter topologies where dielectric robustness and specialized packaging are critical. Packaging type plays an equally important role in system integration. Surface-mount solutions enable automated assembly, reduced parasitic inductance, and compact thermal management, making them attractive for high-volume consumer and telecom modules. Through-hole packaging remains relevant where higher creepage, simplified thermal conduction paths, and field replaceability are required, particularly in heavy industrial and rail applications.

Taken together, this segmentation clarifies that product choice is not merely a technical preference but a strategic decision that aligns device class with application-specific reliability demands, power-rating constraints, and assembly realities. Pragmatically, design teams must evaluate trade-offs across these axes, leveraging MOSFET and Schottky diode improvements for most high-efficiency, high-frequency use cases while reserving alternative device types and through-hole formats for applications demanding exceptional ruggedness or simplified field serviceability.

How regional manufacturing strengths, policy environments, and application priorities in the Americas, Europe Middle East & Africa, and Asia-Pacific drive strategic SiC adoption choices

Regional dynamics play a decisive role in how discrete SiC technologies are manufactured, qualified, and adopted by systems integrators. In the Americas, there is a pronounced emphasis on domestically accessible supply chains and advanced packaging capabilities, with investment directed at high-reliability industrial and automotive applications that benefit from local vendor collaborations. This region tends to favor solutions that enable rapid prototype-to-production cycles and supports aggressive qualification timelines for automotive and renewable energy programs, leveraging proximity to major OEMs and tier-one suppliers.

Europe, Middle East & Africa exhibits a different set of priorities, where regulatory drivers and sustainability targets push system designers toward higher efficiency components and long-term reliability. This regional market emphasizes stringent functional safety standards, electromagnetic compatibility, and lifecycle emissions considerations, all of which shape component selection and supplier qualification. Local manufacturing initiatives and industrial policy measures in some countries have also encouraged regional capacity enhancements to reduce exposure to global supply disruptions.

Asia-Pacific remains the largest and most diversified production and consumption hub for SiC devices and supporting materials. The region's semiconductor manufacturing strengths, broad supplier base, and dense system integrator ecosystem accelerate iteration cycles and volume-driven cost improvement. Many consumer electronics, telecom infrastructure, and EV supply chain nodes are integrated in this region, facilitating vertically coordinated supply relationships. Across all regions, cross-border considerations such as tariff regimes, logistics lead times, and available talent pools influence where firms decide to qualify devices and place long-term volume commitments. Ultimately, regional strengths and policy environments shape how manufacturers prioritize capacity investments, where design centers locate, and which applications are targeted for early SiC adoption.

Company-level strategies that combine process innovation, packaging leadership, and ecosystem partnerships to secure long-term adoption of discrete SiC devices

Leading companies in the discrete SiC value chain are differentiating through a combination of device performance, manufacturing scale, and ecosystem partnerships. Firms that invest in epitaxial process control, advanced edge termination, and robust gate-oxide technologies tend to produce devices with superior reliability and lower on-resistance, which appeals to automotive and renewable energy customers. Other companies differentiate by expanding packaging capabilities and developing proprietary surface-mount formats that reduce parasitic inductance and simplify thermal management for high-frequency converters.

Strategic alliances and supply agreements are increasingly common as manufacturers seek to secure wafer supply and accelerate qualification in key verticals. Partnerships between device vendors, module integrators, and system OEMs shorten feedback loops, enabling faster optimization of dies, substrates, and thermal interfaces. Several companies are pursuing vertical integration to internalize epitaxy and wafer fabrication, reducing exposure to upstream bottlenecks and enhancing control over performance-defining process steps. Meanwhile, specialized firms focus on application-specific customization, offering design-for-reliability services, test programs aligned with automotive and industrial standards, and collaborative development that helps OEMs meet stringent qualification milestones.

From a commercial standpoint, successful companies blend technical credibility with flexible commercial terms that address lead times, qualification support, and lifecycle assurance. They provide comprehensive reliability data, cross-reference matrices to facilitate retrofit in existing designs, and long-term component roadmaps that help OEMs plan multi-generation products. Ultimately, competitive advantage accrues to organizations that can demonstrate consistent device performance under real-world stressors, support rapid engineering iterations, and offer supply continuity through diversified manufacturing footprints and strategic partnerships.

Actionable recommendations for executives to synchronize engineering, procurement, and commercial strategies to accelerate SiC adoption with minimized technical and supply risks

Industry leaders seeking to capitalize on the SiC transition should pursue coordinated technical, commercial, and supply-chain measures that reduce adoption friction while preserving competitive differentiation. First, engineering organizations should standardize qualification protocols and test-method interoperability across product lines to shorten design cycles and lower validation costs. By adopting common thermal cycling, surge, and gate reliability tests, teams can accelerate cross-application reuse of validated device families and avoid repeated requalification expenses. Second, procurement and product management should jointly implement supplier development programs that secure prioritized capacity and knowledge transfer while enabling flexible sourcing options to mitigate geopolitical and tariff-driven risks.

Third, firms should invest in packaging and subsystem co-design to fully realize SiC's potential for higher switching frequencies and reduced magnetics. Collaborative development between device suppliers and module integrators can unlock new form factors and thermal approaches that translate device-level advantages into tangible system-level benefits. Fourth, commercial teams must renegotiate contractual structures to align incentives for long-term collaboration, including volume-based commitments tied to collaborative design milestones and shared quality improvement plans. Finally, executives should maintain a disciplined roadmap that sequences SiC integration from lower-risk power stages where performance gains map directly to operational cost savings toward more challenging high-voltage systems, thereby balancing innovation velocity with warranty and reliability considerations.

Taken together, these actionable steps enable leaders to reduce time-to-adoption, preserve supply resilience, and extract measurable efficiency gains while maintaining commercial flexibility. Institutions that synchronize engineering, procurement, and commercial strategies will be best positioned to capture the operational and sustainability benefits of SiC integration across diverse end markets.

Methodology combining primary stakeholder interviews, device-level technical validation, and regulatory and patent triangulation to ensure replicable, engineering-focused insights

The research methodology underpinning this analysis combines primary technical validation with targeted stakeholder interviews and triangulation against public regulatory and patent records to ensure rigor and relevance. Primary inputs include conversations with device engineers, system integrators, procurement leaders, and packaging specialists to capture first-order insights into device selection rationales, qualification hurdles, and supply-chain constraints. These qualitative inputs are augmented by device-level datasheet comparisons, failure-mode analyses from reliability labs, and cross-referenced patent filings to validate claims around process innovations and packaging developments.

Secondary sources encompass regulatory documentation, technical conference proceedings, and standards guidance that inform functional safety, electromagnetic compatibility, and longevity expectations across automotive, industrial, renewable, and telecom applications. The methodology emphasizes reproducibility: testing parameters, qualification criteria, and comparative device characteristics are documented to enable readers to map findings to their internal validation frameworks. Where appropriate, scenario analysis is used to illustrate how procurement and design decisions might evolve under different supply-chain or regulatory conditions. Throughout, the approach privileges direct technical evidence and stakeholder perspectives over speculative extrapolation, ensuring conclusions are grounded in verifiable practice and engineering judgment.

A concise synthesis of why SiC is transitioning from niche to mainstream and the organizational alignments necessary to capture system-level efficiency and reliability gains

The collective evidence indicates that discrete SiC power devices are shifting from early-adopter niches into strategic mainstream use across a broad set of high-efficiency applications. Technical maturity in wafer processing and packaging, coupled with stronger supply-chain coordination and clearer regulatory incentives, have reduced many of the barriers that previously limited adoption. Nevertheless, successful commercialization requires deliberate alignment of device selection with application-specific reliability needs, procurement strategies that mitigate tariff and geopolitical exposures, and collaboration across the value chain to translate device-level improvements into system-level gains.

In closing, organizations that proactively integrate SiC into their power-electronics roadmaps-by harmonizing qualification protocols, diversifying suppliers, and co-innovating on packaging and thermal integration-will extract the most value while avoiding common pitfalls. The transition demands careful orchestration, but for companies that align technical rigor with pragmatic procurement and commercial approaches, SiC offers a sustained pathway to higher efficiency, reduced system volume, and improved operational resilience across automotive, industrial, renewable, telecom, and consumer electronics domains.

Product Code: MRR-7A380DA7C5FB

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Discrete SiC Power Devices Market, by Product Type

  • 8.1. Bjt
  • 8.2. Jfet
  • 8.3. Mosfet
  • 8.4. Schottky Diode

9. Discrete SiC Power Devices Market, by Power Rating

  • 9.1. 601-1200 V
  • 9.2. Above 1200 V
  • 9.3. Below 600 V

10. Discrete SiC Power Devices Market, by Packaging Type

  • 10.1. Surface Mount
  • 10.2. Through Hole

11. Discrete SiC Power Devices Market, by Application

  • 11.1. Automotive
    • 11.1.1. Dc-Dc Converter
    • 11.1.2. Ev Charger
    • 11.1.3. Onboard Inverter
  • 11.2. Consumer Electronics
    • 11.2.1. Power Adapter
    • 11.2.2. Power Management Ic
  • 11.3. Industrial Power Supply
    • 11.3.1. Industrial Drive
    • 11.3.2. Server Power Supply
    • 11.3.3. Ups
  • 11.4. Rail & Marine
    • 11.4.1. Auxiliary Power Supply
    • 11.4.2. Traction Drive
  • 11.5. Renewable Energy
    • 11.5.1. Battery Energy Storage
    • 11.5.2. Solar Inverter
    • 11.5.3. Wind Turbine Converter
  • 11.6. Telecom & Datacom
    • 11.6.1. Base Station Power
    • 11.6.2. Data Center Power

12. Discrete SiC Power Devices Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Discrete SiC Power Devices Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Discrete SiC Power Devices Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Discrete SiC Power Devices Market

16. China Discrete SiC Power Devices Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Coherent Corp.
  • 17.6. Fuji Electric Co., Ltd.
  • 17.7. GeneSiC Semiconductor Inc.
  • 17.8. Hitachi Power Semiconductor Device, Ltd.
  • 17.9. Infineon Technologies AG
  • 17.10. Littelfuse, Inc.
  • 17.11. Microchip Technology Incorporated
  • 17.12. Mitsubishi Electric Corporation
  • 17.13. ON Semiconductor Corporation
  • 17.14. Power Integrations, Inc.
  • 17.15. Qorvo, Inc.
  • 17.16. Renesas Electronics Corporation
  • 17.17. Robert Bosch GmbH
  • 17.18. ROHM Co., Ltd.
  • 17.19. Semikron Danfoss GmbH
  • 17.20. StarPower Semiconductor Ltd.
  • 17.21. STMicroelectronics N.V.
  • 17.22. Toshiba Electronic Devices & Storage Corporation
  • 17.23. Vishay Intertechnology, Inc.
  • 17.24. Wolfspeed, Inc.
Product Code: MRR-7A380DA7C5FB

LIST OF FIGURES

  • FIGURE 1. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL DISCRETE SIC POWER DEVICES MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL DISCRETE SIC POWER DEVICES MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BJT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BJT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BJT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY JFET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY JFET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY JFET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY MOSFET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY MOSFET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY MOSFET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SCHOTTKY DIODE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SCHOTTKY DIODE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SCHOTTKY DIODE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY 601-1200 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY 601-1200 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY 601-1200 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY ABOVE 1200 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY ABOVE 1200 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY ABOVE 1200 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BELOW 600 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BELOW 600 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BELOW 600 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SURFACE MOUNT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SURFACE MOUNT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SURFACE MOUNT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY THROUGH HOLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY THROUGH HOLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY THROUGH HOLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY DC-DC CONVERTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY DC-DC CONVERTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY DC-DC CONVERTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY EV CHARGER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY EV CHARGER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY EV CHARGER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY ONBOARD INVERTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY ONBOARD INVERTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY ONBOARD INVERTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER ADAPTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER ADAPTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER ADAPTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER MANAGEMENT IC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER MANAGEMENT IC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER MANAGEMENT IC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL DRIVE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL DRIVE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL DRIVE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SERVER POWER SUPPLY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SERVER POWER SUPPLY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SERVER POWER SUPPLY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY UPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY UPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY UPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUXILIARY POWER SUPPLY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUXILIARY POWER SUPPLY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUXILIARY POWER SUPPLY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TRACTION DRIVE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TRACTION DRIVE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TRACTION DRIVE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 80. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 81. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 82. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 83. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BATTERY ENERGY STORAGE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 84. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BATTERY ENERGY STORAGE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 85. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BATTERY ENERGY STORAGE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 86. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SOLAR INVERTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 87. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SOLAR INVERTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 88. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY SOLAR INVERTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 89. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY WIND TURBINE CONVERTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 90. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY WIND TURBINE CONVERTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 91. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY WIND TURBINE CONVERTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 92. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 93. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 94. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 95. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 96. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BASE STATION POWER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 97. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BASE STATION POWER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 98. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY BASE STATION POWER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 99. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY DATA CENTER POWER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 100. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY DATA CENTER POWER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 101. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY DATA CENTER POWER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 102. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 103. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 104. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 105. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 106. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 107. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 108. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 109. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 110. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 111. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 112. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 113. AMERICAS DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 114. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 115. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 116. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 117. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 118. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 119. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 120. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 121. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 122. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 123. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 124. NORTH AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 125. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 126. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 127. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 128. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 129. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 130. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 131. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 132. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 133. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 134. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 135. LATIN AMERICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 136. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 137. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 138. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 139. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 140. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 141. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 142. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 143. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 144. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 145. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 146. EUROPE, MIDDLE EAST & AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 147. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 148. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 149. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 150. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 151. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 152. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 153. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 154. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 155. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 156. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 157. EUROPE DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 158. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 159. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 160. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 161. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 162. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 163. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 164. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 165. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 166. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 167. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 168. MIDDLE EAST DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 169. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 170. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 171. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 172. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 173. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 174. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 175. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 176. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 177. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 178. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 179. AFRICA DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 180. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 181. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 182. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 183. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 184. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 185. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 186. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 187. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 188. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 189. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 190. ASIA-PACIFIC DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 191. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 192. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 193. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 194. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 195. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 196. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 197. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 198. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 199. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 200. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 201. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 202. ASEAN DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 203. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 204. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 205. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 206. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 207. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 208. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 209. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 210. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 211. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 212. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 213. GCC DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 214. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 215. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 216. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 217. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 218. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 219. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 220. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 221. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 222. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 223. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 224. EUROPEAN UNION DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 225. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 226. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 227. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 228. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 229. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 230. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 231. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 232. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 233. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 234. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 235. BRICS DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 236. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 237. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 238. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 239. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 240. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 241. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 242. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 243. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 244. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 245. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 246. G7 DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 247. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 248. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 249. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 250. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 251. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 252. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 253. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 254. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 255. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 256. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 257. NATO DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 258. GLOBAL DISCRETE SIC POWER DEVICES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 259. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 260. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 261. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 262. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 263. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 264. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 265. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 266. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 267. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 268. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 269. UNITED STATES DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
  • TABLE 270. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 271. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PRODUCT TYPE, 2018-2032 (USD MILLION)
  • TABLE 272. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 273. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY PACKAGING TYPE, 2018-2032 (USD MILLION)
  • TABLE 274. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 275. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 276. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY CONSUMER ELECTRONICS, 2018-2032 (USD MILLION)
  • TABLE 277. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY INDUSTRIAL POWER SUPPLY, 2018-2032 (USD MILLION)
  • TABLE 278. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RAIL & MARINE, 2018-2032 (USD MILLION)
  • TABLE 279. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY RENEWABLE ENERGY, 2018-2032 (USD MILLION)
  • TABLE 280. CHINA DISCRETE SIC POWER DEVICES MARKET SIZE, BY TELECOM & DATACOM, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!