Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925515

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925515

SiC Power Devices for New Energy Vehicles Market by Application, Power Rating, Voltage Class, Propulsion Type, Vehicle Type, Package Type, Distribution Channel - Global Forecast 2026-2032

PUBLISHED:
PAGES: 182 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The SiC Power Devices for New Energy Vehicles Market was valued at USD 4.22 billion in 2025 and is projected to grow to USD 4.63 billion in 2026, with a CAGR of 10.54%, reaching USD 8.52 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 4.22 billion
Estimated Year [2026] USD 4.63 billion
Forecast Year [2032] USD 8.52 billion
CAGR (%) 10.54%

A concise introduction to how silicon carbide power devices are reshaping electric vehicle powertrains through efficiency, thermal resilience, and system optimization

Silicon carbide (SiC) power devices are redefining the electrical architecture of new energy vehicles by delivering higher efficiency, greater thermal tolerance, and smaller cooling footprints than legacy silicon solutions. As automotive OEMs and tier suppliers rearchitect power electronics for battery electric, hybrid, and fuel cell drivetrains, SiC semiconductors are increasingly specified where efficiency gains translate directly into extended driving range, faster charging, or reduced system mass and complexity.

This introduction synthesizes why SiC matters now: improvements in semiconductor process controls, rising inverter switching frequencies, and a renewed emphasis on system-level optimization across traction inverters, onboard chargers, and DC-DC converters. The narrative also captures supply chain realities and the interplay between device packaging, power rating requirements, and vehicle-level thermal management. By connecting device-level capabilities to vehicle-level outcomes, this section frames the broader implications for engineering teams, procurement, and strategic planners who must evaluate technology adoption against cost, reliability, and manufacturability constraints.

Transitioning from legacy silicon to SiC requires holistic change management, spanning component qualification, supplier collaboration, and validation protocols. This introduction sets the stage for deeper analysis of market-transformative shifts, tariff impacts, segmentation insights, regional patterns, and pragmatic recommendations for leaders navigating the rapid evolution of electrified mobility powertrains.

How vehicle electrification, supplier co-development, and packaging innovation are jointly restructuring power electronics and accelerating silicon carbide adoption across automotive value chains

The landscape of power electronics for new energy vehicles is undergoing transformative shifts driven by performance expectations, design innovation, and supply chain realignment. Vehicle manufacturers are prioritizing higher switching frequencies and elevated junction temperatures to unlock smaller passive components and lighter thermal management systems. As a result, the traditional boundaries between inverter, charger, and onboard power management architectures are blurring, encouraging integrated system solutions that leverage SiC's electrical and thermal benefits.

Concurrently, suppliers are accelerating investments in process yield improvements, wafer-level scaling, and packaging innovations to reduce overall system cost and improve reliability. These technical advances are accompanied by evolving validation regimes, with suppliers and OEMs jointly developing accelerated life testing and vehicle-level qualification protocols to shorten time-to-deployment while managing long-term warranty exposure. The ecosystem is also witnessing a shift toward modular, scalable power assemblies that allow OEMs to standardize platforms across vehicle segments and propulsion types.

Strategic partnerships and co-development agreements are becoming more common, signaling a move away from transactional supply relationships toward deeper engineering collaboration. This collaborative model reduces implementation risk and supports concurrent development of semiconductor devices, module packaging, and cooling solutions. Taken together, these shifts are recalibrating product roadmaps and procurement strategies across the automotive value chain, accelerating SiC adoption where technical differentiation aligns with customer value propositions.

An analysis of how evolving U.S. tariff measures are reshaping supplier selection, inventory strategies, and investment decisions across silicon carbide device supply chains

Recent trade policy developments and tariff implementations in the United States are an important factor in supply chain strategy for SiC power devices and related subsystems. Tariff adjustments affect cost structures across multiple tiers, prompting OEMs and suppliers to reassess sourcing geographies, inventory strategies, and near-term procurement commitments. In response, organizations are balancing the need for supply continuity with the desire to preserve margin and avoid price volatility in critical program phases.

These tariff-driven dynamics are prompting several practical responses. Some manufacturers are diversifying qualified suppliers across multiple regions to mitigate single-source exposure, while others are accelerating risk-sharing arrangements and long-term purchase agreements to stabilize input costs. Inventory profiling for critical components has become more granular, with firms opting for strategic safety stocks at regional distribution centers and leveraging bonded warehousing to reduce immediate tariff impact. Moreover, engineering teams are exploring design-for-supply flexibility, specifying alternative package types or substantiating second-source device variants to ensure continuity across vehicle production ramps.

Importantly, tariff changes are also affecting supplier investment decisions. Capital allocation priorities for capacity expansion and domestic assembly are being evaluated in light of trade policy signals, which in turn influence lead times and qualification timelines for new capacity. The cumulative effect is a more cautious yet deliberate approach to supplier selection, where tariff sensitivity is explicitly modeled alongside technical performance and long-term strategic alignment.

Comprehensive segmentation-driven insights that map application, power-rating, voltage class, propulsion type, vehicle class, package format, and distribution channel to pragmatic device and system decisions

Insightful segmentation illuminates where value accrues within electrified powertrains and clarifies which technical and commercial levers matter most for adoption of SiC devices. When assessed by application, components such as Battery Management Systems, DC-DC Converters, Onboard Chargers, and Traction Inverters present distinct requirements for switching speed, thermal resilience, and electromagnetic compatibility, influencing device selection and module architecture. Power-rating segmentation further refines these choices; Up To 100 kW applications prioritize compactness and cost-efficiency, 100 To 200 kW configurations require nuanced thermal and switching trade-offs and themselves split into 100 To 150 kW and 151 To 200 kW brackets that align with different passenger and commercial vehicle classes, while Above 200 kW targets heavy-duty and high-performance platforms demanding robust packaging and higher current-handling capacity.

Voltage class plays a decisive role in device process and isolation choices; Up To 650 V systems follow different design rules than 650 To 1200 V platforms, the latter of which divide into 650 To 900 V and 901 To 1200 V categories that influence module topology and gate-driver architecture. Propulsion type further dictates requirements: Battery Electric Vehicles push for maximum inverter efficiency and battery-to-traction integration, Fuel Cell Electric Vehicles introduce distinct DC-DC conversion profiles and transient behaviors, Hybrid Electric Vehicles and Plug-In Hybrid Electric Vehicles require flexible modes of operation and multi-domain power management. Vehicle type segmentation reveals divergent priorities, as Passenger Vehicles emphasize cost-to-performance balance and packaging density, Commercial Vehicles demand durability and serviceability, and Off-Road Vehicles require ruggedized designs tolerant of harsh environments.

Package type differentiation between Discrete devices and integrated Modules affects assembly, thermal pathways, and qualification timelines, while distribution channel distinctions between Aftermarket and OEM influence certification, warranty structures, and lifecycle support models. Integrating these segmentation lenses enables suppliers and OEMs to match device attributes to system requirements, prioritize validation regimes, and structure commercial terms that reflect application-driven risk and service expectations.

How regional policy priorities, manufacturing ecosystems, and regulatory rigor across the Americas, Europe Middle East & Africa, and Asia-Pacific create differentiated strategic imperatives for SiC power devices

Regional dynamics shape strategic imperatives for manufacturers, suppliers, and OEMs at different stages of the value chain. In the Americas, policies that incentivize local manufacturing and domestic content, together with a concentration of EV OEM investment, favor onshore assembly, localized qualification loops, and deeper supplier relationships that reduce geopolitical exposure. These trends encourage investments in qualification capacity and create opportunities for regional module assembly to meet program timing and warranty assurance needs.

Europe, Middle East & Africa present a distinct mix of regulatory stringency, legacy automotive ecosystems, and ambitious decarbonization targets. Regulatory compliance and homologation protocols are often more prescriptive, prompting suppliers to demonstrate lifecycle emissions, recyclability of power modules, and end-of-life logistics. This environment rewards suppliers that can couple technical performance with sustainability credentials and advanced validation data.

In the Asia-Pacific region, an established semiconductor manufacturing base and vertically integrated supply chains yield near-term advantages in scale, cost, and rapid prototyping. Proximity to major OEM plants facilitates tight engineering feedback loops and faster design iterations, although dependency on specific regional suppliers can introduce concentration risk. Across all regions, cross-border logistics, trade regulations, and regional certification requirements continue to influence sourcing strategies and time-to-production, making regional nuance a critical input into supplier qualification and program planning.

Key company-level dynamics and partnership models revealing how device makers, module integrators, and tier suppliers are accelerating performance improvements and customer integration

Competitive and collaborative dynamics among device manufacturers, module integrators, and tier suppliers are central to the evolving SiC ecosystem. Leading device makers have focused on improving wafer yields, scaling wafer diameter, and advancing trench and planar process variants to lower on-chip losses and improve switching robustness. Module integrators are concurrently investing in thermal interface materials, advanced substrates, and low-inductance packaging to realize system-level benefits and simplify OEM integration.

Partnership models range from supply agreements with defined performance and volume milestones to deeper co-development arrangements where suppliers embed engineers within OEM programs to accelerate qualification and optimize control strategies. Service offerings have expanded to include application engineering support, in-vehicle reliability assessments, and joint validation platforms that reduce time-to-integration. Ecosystem entrants such as power module manufacturers and thermal solution providers are differentiating through faster prototype cycles and flexible customization pathways that accommodate diverse vehicle architectures.

These developments underscore a competitive landscape where technical differentiation, IP depth, and responsiveness to OEM development cycles determine supplier traction. Organizations that align product roadmaps with vehicle program timelines and invest in robust validation and application support are positioned to de-risk adoption and capture sustained design wins across multiple vehicle segments.

Actionable recommendations that align early co-validation, diversified supplier qualification, regional assembly options, and lifecycle considerations to de-risk SiC adoption for vehicle programs

Industry leaders must adopt pragmatic, actionable strategies to convert technological advantages into reliable program outcomes. First, prioritizing early application-level engagement between device suppliers and vehicle system teams reduces integration risk by aligning electrical, thermal, and control-system requirements before detailed tradeoffs are frozen. Early-stage co-validation and hardware-in-the-loop testing shorten feedback cycles and ensure that device characteristics translate into measurable vehicle benefits.

Second, strategic diversification of qualified suppliers across regions and package formats mitigates disruption risk. Leaders should qualify alternative devices across the range of power ratings and voltage classes relevant to their platforms and validate module-level thermal performance under representative duty cycles. Third, investing in domestic or regional assembly capacity for critical modules can provide flexibility to respond to tariff changes and logistics volatility, while also supporting program cadence requirements and warranty obligations.

Finally, embedding life-cycle and sustainability considerations into supplier selection and packaging choices enhances regulatory resilience and supports brand commitments. By combining technical due diligence with flexible sourcing strategies and strong cross-functional program governance, industry leaders can accelerate adoption of SiC technologies while protecting program timelines and total cost of ownership.

A clear explanation of the mixed-methods research approach combining primary engineering interviews, secondary technical analysis, and scenario assessments to inform actionable insights

This research employs a mixed-methods approach that integrates primary qualitative engagement with engineering and procurement leaders, structured technical interviews with device and module suppliers, and secondary analysis of technical literature, patent filings, and regulatory guidance. Primary inputs included discussions with vehicle electrification architects, power electronics engineers, and supply chain managers to capture real-world constraints in program timelines, qualification hurdles, and validation expectations. Secondary research focused on technical publications, standards developments, and product datasheets to corroborate performance claims and identify emerging packaging and thermal management trends.

Analytical methods combined thematic synthesis of interview findings with cross-sectional comparisons across applications, power ratings, and voltage classes to reveal where device-level benefits map most directly to vehicle-level outcomes. Scenario-based assessments were used to evaluate supplier resiliency under tariff and logistics stressors, and to derive pragmatic supplier qualification pathways. Throughout the methodology, results were triangulated to ensure that recommendations reflect both technical feasibility and commercial viability. Confidentiality constraints and commercial sensitivities were respected in primary engagements, with aggregated insights presented to support decision making without divulging proprietary program specifics.

A concise conclusion tying technical innovation, supplier collaboration, and strategic sourcing together as the decisive factors for effective silicon carbide integration across vehicle platforms

In conclusion, silicon carbide power devices represent a pivotal enabler for next-generation electrified vehicles, delivering system-level advantages that extend beyond raw device performance to influence thermal management, packaging, and vehicle efficiency. Adoption will be shaped by a confluence of technical innovation in device and module design, strategic supplier relationships that embed engineering collaboration, and regional policy and trade dynamics that affect sourcing and investment choices. Organizations that proactively address validation, diversify qualified suppliers across power ratings and voltage classes, and align packaging strategies with lifecycle expectations will be best positioned to convert SiC advantages into sustained vehicle-program value.

Moving forward, the interplay between engineering rigor, supply chain strategy, and policy awareness will determine the pace and scope of SiC integration across passenger, commercial, and off-road vehicle platforms. Leaders should emphasize cross-functional governance, invest in robust qualification infrastructure, and pursue supplier partnerships that prioritize transparent performance metrics and co-development pathways. With these measures in place, SiC devices can be deployed in ways that deliver tangible improvements to driving range, charging experience, and overall system reliability, while managing the commercial and logistical complexities inherent in large-scale automotive programs.

Product Code: MRR-7A380DA7C678

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. SiC Power Devices for New Energy Vehicles Market, by Application

  • 8.1. Battery Management System
  • 8.2. DC-DC Converter
  • 8.3. Onboard Charger
  • 8.4. Traction Inverter

9. SiC Power Devices for New Energy Vehicles Market, by Power Rating

  • 9.1. 100 To 200 kW
  • 9.2. Above 200 kW
  • 9.3. Less Than 100 kW

10. SiC Power Devices for New Energy Vehicles Market, by Voltage Class

  • 10.1. 650 To 1200 V
    • 10.1.1. 650 To 900 V
    • 10.1.2. 901 To 1200 V
  • 10.2. Above 1200 V
  • 10.3. Up To 650 V

11. SiC Power Devices for New Energy Vehicles Market, by Propulsion Type

  • 11.1. Battery Electric Vehicle
  • 11.2. Fuel Cell Electric Vehicle
  • 11.3. Hybrid Electric Vehicle
  • 11.4. Plug-In Hybrid Electric Vehicle

12. SiC Power Devices for New Energy Vehicles Market, by Vehicle Type

  • 12.1. Commercial Vehicle
  • 12.2. Off-Road Vehicle
  • 12.3. Passenger Vehicle

13. SiC Power Devices for New Energy Vehicles Market, by Package Type

  • 13.1. Discrete
  • 13.2. Module

14. SiC Power Devices for New Energy Vehicles Market, by Distribution Channel

  • 14.1. Aftermarket
  • 14.2. OEM

15. SiC Power Devices for New Energy Vehicles Market, by Region

  • 15.1. Americas
    • 15.1.1. North America
    • 15.1.2. Latin America
  • 15.2. Europe, Middle East & Africa
    • 15.2.1. Europe
    • 15.2.2. Middle East
    • 15.2.3. Africa
  • 15.3. Asia-Pacific

16. SiC Power Devices for New Energy Vehicles Market, by Group

  • 16.1. ASEAN
  • 16.2. GCC
  • 16.3. European Union
  • 16.4. BRICS
  • 16.5. G7
  • 16.6. NATO

17. SiC Power Devices for New Energy Vehicles Market, by Country

  • 17.1. United States
  • 17.2. Canada
  • 17.3. Mexico
  • 17.4. Brazil
  • 17.5. United Kingdom
  • 17.6. Germany
  • 17.7. France
  • 17.8. Russia
  • 17.9. Italy
  • 17.10. Spain
  • 17.11. China
  • 17.12. India
  • 17.13. Japan
  • 17.14. Australia
  • 17.15. South Korea

18. United States SiC Power Devices for New Energy Vehicles Market

19. China SiC Power Devices for New Energy Vehicles Market

20. Competitive Landscape

  • 20.1. Market Concentration Analysis, 2025
    • 20.1.1. Concentration Ratio (CR)
    • 20.1.2. Herfindahl Hirschman Index (HHI)
  • 20.2. Recent Developments & Impact Analysis, 2025
  • 20.3. Product Portfolio Analysis, 2025
  • 20.4. Benchmarking Analysis, 2025
  • 20.5. ABB Ltd
  • 20.6. Alpha & Omega Semiconductor Inc.
  • 20.7. BASiC Semiconductor Co., Ltd.
  • 20.8. BYD Semiconductor Co., Ltd.
  • 20.9. Coherent Corp.
  • 20.10. DENSO Corporation
  • 20.11. Fuji Electric Co., Ltd.
  • 20.12. Hitachi Energy Ltd
  • 20.13. Infineon Technologies AG
  • 20.14. Littelfuse, Inc.
  • 20.15. Microchip Technology Inc.
  • 20.16. Mitsubishi Electric Corporation
  • 20.17. Navitas Semiconductor Corporation
  • 20.18. NXP Semiconductors N.V.
  • 20.19. Qorvo (UnitedSiC)
  • 20.20. Renesas Electronics Corporation
  • 20.21. ROHM Co., Ltd.
  • 20.22. San'an Optoelectronics Co., Ltd.
  • 20.23. Semiconductor Components Industries, LLC
  • 20.24. StarPower Semiconductor Ltd.
  • 20.25. STMicroelectronics N.V.
  • 20.26. Toshiba Corporation
  • 20.27. Vishay Intertechnology, Inc.
  • 20.28. Vitesco Technologies
  • 20.29. Wolfspeed, Inc.
Product Code: MRR-7A380DA7C678

LIST OF FIGURES

  • FIGURE 1. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 12. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 13. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 14. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 15. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY BATTERY MANAGEMENT SYSTEM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY BATTERY MANAGEMENT SYSTEM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY BATTERY MANAGEMENT SYSTEM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DC-DC CONVERTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DC-DC CONVERTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DC-DC CONVERTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ONBOARD CHARGER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ONBOARD CHARGER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ONBOARD CHARGER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY TRACTION INVERTER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY TRACTION INVERTER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY TRACTION INVERTER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 100 TO 200 KW, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 100 TO 200 KW, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 100 TO 200 KW, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ABOVE 200 KW, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ABOVE 200 KW, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ABOVE 200 KW, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY LESS THAN 100 KW, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY LESS THAN 100 KW, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY LESS THAN 100 KW, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 900 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 900 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 900 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 901 TO 1200 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 901 TO 1200 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 901 TO 1200 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ABOVE 1200 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ABOVE 1200 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY ABOVE 1200 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY UP TO 650 V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY UP TO 650 V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY UP TO 650 V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY BATTERY ELECTRIC VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY BATTERY ELECTRIC VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY BATTERY ELECTRIC VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY FUEL CELL ELECTRIC VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY FUEL CELL ELECTRIC VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY FUEL CELL ELECTRIC VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY HYBRID ELECTRIC VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY HYBRID ELECTRIC VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY HYBRID ELECTRIC VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PLUG-IN HYBRID ELECTRIC VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PLUG-IN HYBRID ELECTRIC VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PLUG-IN HYBRID ELECTRIC VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COMMERCIAL VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COMMERCIAL VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COMMERCIAL VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY OFF-ROAD VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY OFF-ROAD VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY OFF-ROAD VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PASSENGER VEHICLE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PASSENGER VEHICLE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PASSENGER VEHICLE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISCRETE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISCRETE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISCRETE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY MODULE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY MODULE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY MODULE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY AFTERMARKET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY AFTERMARKET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY AFTERMARKET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY OEM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY OEM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY OEM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 80. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 81. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 82. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 83. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 84. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 85. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 86. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 87. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 88. AMERICAS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 89. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 91. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 92. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 93. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 94. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 95. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 96. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 97. NORTH AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 98. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 99. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 100. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 101. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 102. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 103. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 104. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 105. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 106. LATIN AMERICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 110. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 111. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 112. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 113. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 114. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 115. EUROPE, MIDDLE EAST & AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 116. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 117. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 118. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 119. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 120. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 121. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 122. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 123. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 124. EUROPE SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 125. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 126. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 127. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 128. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 129. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 130. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 131. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 132. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 133. MIDDLE EAST SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 134. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 135. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 136. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 137. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 138. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 139. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 140. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 141. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 142. AFRICA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 143. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 144. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 145. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 146. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 147. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 148. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 149. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 150. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 151. ASIA-PACIFIC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 152. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 153. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 155. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 156. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 157. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 158. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 159. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 160. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 161. ASEAN SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 162. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 163. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 164. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 165. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 166. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 167. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 168. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 169. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 170. GCC SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 171. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 172. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 173. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 174. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 175. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 176. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 177. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 178. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 179. EUROPEAN UNION SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 180. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 181. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 182. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 183. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 184. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 185. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 186. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 187. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 188. BRICS SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 189. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 190. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 191. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 192. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 193. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 194. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 195. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 196. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 197. G7 SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 198. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 199. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 200. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 201. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 202. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 203. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 204. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 205. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 206. NATO SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 207. GLOBAL SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 208. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 209. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 210. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 211. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 212. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 213. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 214. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 215. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 216. UNITED STATES SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
  • TABLE 217. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 218. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 219. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 220. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VOLTAGE CLASS, 2018-2032 (USD MILLION)
  • TABLE 221. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY 650 TO 1200 V, 2018-2032 (USD MILLION)
  • TABLE 222. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PROPULSION TYPE, 2018-2032 (USD MILLION)
  • TABLE 223. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 224. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY PACKAGE TYPE, 2018-2032 (USD MILLION)
  • TABLE 225. CHINA SIC POWER DEVICES FOR NEW ENERGY VEHICLES MARKET SIZE, BY DISTRIBUTION CHANNEL, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!