Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925560

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925560

Passenger Car Electric Power Steering System Market by Steering System Type, Motor Type, Vehicle Type, Application - Global Forecast 2026-2032

PUBLISHED:
PAGES: 184 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Passenger Car Electric Power Steering System Market was valued at USD 28.19 billion in 2025 and is projected to grow to USD 29.62 billion in 2026, with a CAGR of 6.83%, reaching USD 44.78 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 28.19 billion
Estimated Year [2026] USD 29.62 billion
Forecast Year [2032] USD 44.78 billion
CAGR (%) 6.83%

Concise framing of contemporary electric power steering essentials covering design architecture, integration priorities, and lifecycle considerations for passenger cars

Electric power steering (EPS) systems have evolved from simple assistive mechanisms into highly integrated electromechanical platforms that influence vehicle safety, efficiency, and driver experience. Recent advances in motor control, steering sensor fusion, and software-enabled fault diagnostics have shifted EPS from a purely mechanical adjunct to a core element of vehicle motion control architecture. This introduction outlines the contemporary scope of passenger car electric power steering technology and frames the strategic considerations that matter to OEMs, suppliers, and tiered integrators.

Manufacturers now prioritize modularity, software-defined functionality, and compatibility with vehicle electrification and driver assistance systems. As a result, EPS design teams must balance torque delivery, thermal management, and packaging constraints while ensuring compliance with evolving safety and electromagnetic compatibility standards. Moreover, lifecycle considerations such as serviceability, aftermarket interoperability, and recyclability increasingly influence component selection and supplier relationships. Taken together, these dynamics set the stage for deeper analysis of market shifts, tariff impacts, segmentation nuances, regional differences, corporate strategies, and recommended actions for industry leaders.

How rapid electrification, ADAS convergence, and supply-chain consolidation are reshaping electric power steering development priorities and competitive differentiation

The landscape of passenger car EPS is undergoing transformative shifts driven by a confluence of technological innovation, regulatory pressure, and changing consumer expectations. Electrification of vehicle powertrains has raised the strategic importance of EPS as an energy-efficient alternative to hydraulic steering, while the adoption of advanced driver assistance systems has pushed EPS toward deterministic control and redundancy. In parallel, the maturation of brushless motor designs and high-efficiency power electronics has enabled lighter modules with improved thermal resilience and quieter operation.

Supply-chain restructuring and platform consolidation are encouraging suppliers to offer scalable EPS modules compatible with multiple vehicle architectures. Furthermore, software and diagnostics have emerged as value levers, enabling performance differentiation through torque tuning, lane-keeping interfaces, and predictive maintenance analytics. Meanwhile, regulatory trends around pedestrian safety, lane-keeping mandates, and electromagnetic compatibility continue to raise engineering rigor. Together, these shifts are redefining competitive boundaries and compelling stakeholders to integrate cross-disciplinary capabilities spanning controls engineering, electrical architecture, and aftermarket service models.

Assessment of the 2025 United States tariff measures and their strategic implications for sourcing, nearshoring, and supplier qualification in automotive components

United States tariff actions implemented in 2025 have created a notable ripple effect across the global automotive components ecosystem, influencing sourcing strategies, supplier footprints, and commercial negotiations. Tariff differentials have prompted many suppliers to reassess cost-to-serve models and prioritize regional manufacturing to maintain competitive pricing for North American OEM programs. Concurrently, procurement teams adjusted supplier qualification criteria to account for total landed cost variability rather than unit price alone, and contract structures increasingly include clauses addressing tariff pass-through and currency volatility.

The tariff environment has also accelerated conversations about nearshoring and dual-sourcing to reduce exposure to trade policy shifts. Engineering teams responded by emphasizing component commonality to simplify qualification in alternative manufacturing locations. At the same time, some suppliers concentrated investments in local content and assembly capacity to preserve long-term program positions. Importantly, these structural responses have not only economic implications but operational ones, as lead-time management, quality oversight, and logistics planning became higher priorities during program execution. In sum, the 2025 tariff measures reinforced the need for strategic supply-chain agility and closer collaboration between procurement, engineering, and commercial functions.

In-depth segmentation insights that map steering topology, motor architecture, vehicle class, and application requirements to engineering trade-offs and commercial priorities

Segmentation analysis for passenger car electric power steering systems reveals distinct development pathways and commercial priorities across multiple technical and market axes. Based on steering system type, the industry evaluates column-assisted, pinion-assisted, and rack-assisted EPS variants for their packaging advantages, steering feel characteristics, and integration complexity; column-assisted designs often appeal to compact vehicle architectures, while pinion-assisted and rack-assisted topologies provide higher torque density and more direct mechanical engagement for larger platforms.

Based on motor type, product teams weigh the trade-offs among AC motors, brush DC motors, and brushless DC motors; brushless DC architectures continue to gain traction because they deliver improved efficiency, reduced maintenance needs, and finer torque control, whereas brush DC motors remain relevant where cost sensitivity and legacy platform compatibility matter. Based on vehicle type, requirements diverge across coupes, hatchbacks, MPVs, sedans, and SUVs, with packaging constraints, steering effort expectations, and target driving characteristics shaping control software and mechanical gearing choices. Based on application, OEM programs demand robust validation, long lifecycle support, and integration with vehicle electrical architectures, while aftermarket channels emphasize interchangeability, retrofit ease, and cost-effective serviceability. These intersecting segmentation dimensions define engineering roadmaps and commercial propositions, and they inform where suppliers should invest in modular platforms versus bespoke solutions.

Regional strategic considerations and implementation approaches across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape product and sourcing decisions

Regional dynamics affect product strategy, manufacturing footprint, and go-to-market approaches in distinct ways across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, engineering teams prioritize compatibility with North American platform architectures and regulatory regimes, driving demand for locally qualified modules and robust aftersales support networks. Supply-chain proximity and labor considerations also influence decisions about final assembly and calibration services within the region.

In Europe, Middle East & Africa, stringent safety and emissions-related regulations, coupled with high expectations for driving dynamics, encourage investments in precision control and high-reliability components; suppliers often emphasize functional safety compliance and electromobility integration to satisfy regional OEM specifications. In the Asia-Pacific region, rapid vehicle production growth, diverse vehicle form factors, and a strong base of electronics suppliers foster intense competition on cost, integration speed, and local content. Consequently, companies operating across these geographies tailor portfolio strategies to reconcile global platform economies with region-specific performance, certification, and serviceability requirements.

How integrated systems expertise, targeted specialization, and collaborative co-development models determine competitive advantage among leading EPS suppliers

Key industry players continue to differentiate through a combination of integrated systems engineering, manufacturing scale, and strategic partnerships that bridge hardware and software capabilities. Organizations that combine motor and gearbox expertise with advanced power electronics and embedded control software tend to capture program-level opportunities by offering complete EPS modules rather than component-only solutions. At the same time, nimble specialists focus on depth in niche technologies such as high-efficiency motor design, compact thermal management, or functional safety toolchains to support OEMs with specific platform requirements.

Collaborative relationships between tier-one suppliers and vehicle manufacturers have increasingly emphasized co-development models, with early-stage alignment on architecture, validation protocols, and provisioning for over-the-air updates. Suppliers that invest in diagnostic frameworks and serviceable module designs also position themselves favorably for aftermarket growth. Moreover, strategic M&A and cross-sector partnerships are common ways firms augment capabilities in software, sensors, and high-volume manufacturing. Ultimately, competitive advantage arises from the ability to deliver validated, integrable EPS modules that meet OEM timelines while offering pathways for incremental feature upgrades and aftermarket lifecycle support.

Actionable steps for suppliers and OEMs to enhance resilience, accelerate modular product adoption, and integrate software-enabled differentiation in EPS offerings

Industry leaders should prioritize a set of pragmatic actions to capitalize on evolving EPS imperatives and mitigate exposure to trade and supply-chain disruption. First, align product roadmaps with vehicle electrification and advanced driver assistance interfaces by investing in modular architectures that support multiple steering topologies and motor types. This will enable faster program adoption across diverse vehicle classes while controlling certification complexity. Second, pursue regional manufacturing and qualification strategies that reduce tariff vulnerability and shorten lead times, complemented by dual-sourcing where feasible to preserve resilience without sacrificing cost efficiency.

Third, embed software and diagnostics capabilities early in module design to unlock performance differentiation and simplify aftermarket servicing. Fourth, strengthen cross-functional supplier governance to accelerate design-for-manufacturability discussions, harmonize quality expectations, and codify commercial terms that address tariff pass-through. Fifth, evaluate partnerships or targeted acquisitions to fill capability gaps in power electronics, brushless motor expertise, or functional safety toolchains. Taken together, these actions will create a balanced approach that supports short-term program continuity and long-term strategic positioning in a rapidly changing automotive systems landscape.

Transparent mixed-methods research design integrating primary stakeholder interviews, technical teardown insights, and regulatory review to ensure practical and verifiable conclusions

The research approach combines primary stakeholder engagement, technical literature synthesis, and comparative technology assessment to produce a defensible and actionable analysis. Primary inputs include structured interviews with engineering leaders, procurement executives, and aftermarket specialists to capture real-world constraints, validation practices, and commercial decision drivers. These qualitative insights are triangulated with publicly available regulatory documents, supplier technical whitepapers, and patent landscaping to validate claims about technology trajectories and capability concentrations.

Complementing these sources, product-level teardown analyses and engineering trade-off studies provide empirical context for choices between steering topologies and motor types. Cross-regional case studies illustrate how manufacturing decisions and certification regimes affect program execution. Throughout the process, data integrity checks and expert reviews help ensure that conclusions reflect practical engineering realities and contemporary commercial imperatives. This methodology emphasizes transparency in source attribution and replicable logic so that practitioners can adapt findings to their specific program needs.

Concluding synthesis on how modular engineering, supply-chain agility, and software-enabled differentiation will shape durable competitive advantage in EPS systems

In closing, the passenger car electric power steering domain sits at the intersection of mechanical engineering, power electronics, and software-defined vehicle control. Stakeholders who understand the interdependencies among steering topology, motor architecture, vehicle class, and application channel will be better positioned to design product platforms that meet performance, regulatory, and serviceability objectives. Strategic responses to tariff headwinds and regional manufacturing dynamics further underscore the importance of supply-chain flexibility and early alignment between procurement and engineering.

Moving forward, companies that invest in modularity, software-enabled diagnostics, and regional qualification capabilities will find more pathways to capture program opportunities and support aftermarket value chains. Collaboration across the supplier and OEM ecosystem remains essential to manage complexity while accelerating time-to-integration for new vehicle programs. Focused execution on these fronts will enable organizations to both safeguard current business and create durable differentiation as vehicle architectures continue to evolve.

Product Code: MRR-F774F6336A9F

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Passenger Car Electric Power Steering System Market, by Steering System Type

  • 8.1. Column-Assisted EPS
  • 8.2. Pinion-Assisted EPS
  • 8.3. Rack-Assisted EPS

9. Passenger Car Electric Power Steering System Market, by Motor Type

  • 9.1. AC Motor
  • 9.2. Brush DC Motor
  • 9.3. Brushless DC Motor

10. Passenger Car Electric Power Steering System Market, by Vehicle Type

  • 10.1. Coupe
  • 10.2. Hatchback
  • 10.3. MPV
  • 10.4. Sedan
  • 10.5. SUV

11. Passenger Car Electric Power Steering System Market, by Application

  • 11.1. Aftermarket
  • 11.2. OEM

12. Passenger Car Electric Power Steering System Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Passenger Car Electric Power Steering System Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Passenger Car Electric Power Steering System Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Passenger Car Electric Power Steering System Market

16. China Passenger Car Electric Power Steering System Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Advanced Leading Technology Co Ltd
  • 17.6. China Automotive Systems Inc
  • 17.7. Continental AG
  • 17.8. Delphi Technologies
  • 17.9. Denso Corporation
  • 17.10. GKN Automotive Limited
  • 17.11. Hitachi Astemo Ltd
  • 17.12. Hyundai Mobis Co Ltd
  • 17.13. Infineon Technologies AG
  • 17.14. JTEKT Corporation
  • 17.15. KYB Corporation
  • 17.16. Magna International Inc
  • 17.17. Mando Corporation
  • 17.18. Mitsubishi Electric Corporation
  • 17.19. Nexteer Automotive
  • 17.20. NSK Ltd
  • 17.21. Parker Hannifin Corporation
  • 17.22. Robert Bosch GmbH
  • 17.23. Showa Corporation
  • 17.24. Sona Koyo Steering Systems Ltd
  • 17.25. Thyssenkrupp AG
  • 17.26. Valeo SA
  • 17.27. ZF Friedrichshafen AG
  • 17.28. Zhejiang Shibao Company Limited
Product Code: MRR-F774F6336A9F

LIST OF FIGURES

  • FIGURE 1. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COLUMN-ASSISTED EPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COLUMN-ASSISTED EPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COLUMN-ASSISTED EPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY PINION-ASSISTED EPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY PINION-ASSISTED EPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY PINION-ASSISTED EPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY RACK-ASSISTED EPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY RACK-ASSISTED EPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY RACK-ASSISTED EPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY AC MOTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY AC MOTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY AC MOTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY BRUSH DC MOTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY BRUSH DC MOTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY BRUSH DC MOTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY BRUSHLESS DC MOTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY BRUSHLESS DC MOTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY BRUSHLESS DC MOTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUPE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUPE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUPE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY HATCHBACK, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY HATCHBACK, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY HATCHBACK, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MPV, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MPV, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MPV, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SEDAN, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SEDAN, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SEDAN, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SUV, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SUV, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SUV, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY AFTERMARKET, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY AFTERMARKET, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY AFTERMARKET, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY OEM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY OEM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY OEM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 46. AMERICAS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 47. AMERICAS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 48. AMERICAS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 49. AMERICAS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 50. AMERICAS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 51. NORTH AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 52. NORTH AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 53. NORTH AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 54. NORTH AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 55. NORTH AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 56. LATIN AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 57. LATIN AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 58. LATIN AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 59. LATIN AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 60. LATIN AMERICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 61. EUROPE, MIDDLE EAST & AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 62. EUROPE, MIDDLE EAST & AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 63. EUROPE, MIDDLE EAST & AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 64. EUROPE, MIDDLE EAST & AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 65. EUROPE, MIDDLE EAST & AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 66. EUROPE PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 67. EUROPE PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 68. EUROPE PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 69. EUROPE PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 70. EUROPE PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 71. MIDDLE EAST PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 72. MIDDLE EAST PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 73. MIDDLE EAST PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 74. MIDDLE EAST PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 75. MIDDLE EAST PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 76. AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 77. AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 78. AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 79. AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 80. AFRICA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 81. ASIA-PACIFIC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 82. ASIA-PACIFIC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 83. ASIA-PACIFIC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 84. ASIA-PACIFIC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 85. ASIA-PACIFIC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 86. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 87. ASEAN PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 88. ASEAN PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 89. ASEAN PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 90. ASEAN PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 91. ASEAN PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 92. GCC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 93. GCC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 94. GCC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 95. GCC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 96. GCC PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 97. EUROPEAN UNION PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 98. EUROPEAN UNION PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 99. EUROPEAN UNION PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 100. EUROPEAN UNION PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 101. EUROPEAN UNION PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 102. BRICS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 103. BRICS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 104. BRICS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 105. BRICS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 106. BRICS PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 107. G7 PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 108. G7 PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 109. G7 PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 110. G7 PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 111. G7 PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 112. NATO PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 113. NATO PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 114. NATO PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 115. NATO PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 116. NATO PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 117. GLOBAL PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 118. UNITED STATES PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 119. UNITED STATES PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 120. UNITED STATES PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 121. UNITED STATES PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 122. UNITED STATES PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 123. CHINA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 124. CHINA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY STEERING SYSTEM TYPE, 2018-2032 (USD MILLION)
  • TABLE 125. CHINA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY MOTOR TYPE, 2018-2032 (USD MILLION)
  • TABLE 126. CHINA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY VEHICLE TYPE, 2018-2032 (USD MILLION)
  • TABLE 127. CHINA PASSENGER CAR ELECTRIC POWER STEERING SYSTEM MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!