Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1925917

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1925917

Sputtering Target for Semiconductor Market by Material, Technology, Form Factor, Application - Global Forecast 2026-2032

PUBLISHED:
PAGES: 197 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Sputtering Target for Semiconductor Market was valued at USD 4.91 billion in 2025 and is projected to grow to USD 5.20 billion in 2026, with a CAGR of 5.88%, reaching USD 7.33 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 4.91 billion
Estimated Year [2026] USD 5.20 billion
Forecast Year [2032] USD 7.33 billion
CAGR (%) 5.88%

Sputtering targets serve as the material source for thin films that are foundational to modern semiconductor devices. Their composition, manufacturing quality and physical form factor directly affect deposition uniformity, film properties and ultimately device performance for logic and memory chips. As device nodes scale and heterogeneous integration accelerates, the precise selection of target materials and deposition technologies becomes a strategic engineering and procurement decision rather than a routine supply transaction.

Within fabrication ecosystems, target choices are influenced by the interplay of application requirements and material science. For logic and memory workloads, differences in thermal budgets, film stress and electrical properties demand tailored approaches to target chemistry and backing designs. Consequently, development cycles for new target chemistries often run in parallel with device process integration, requiring closer collaboration between materials suppliers and device manufacturers. As a result, stakeholders must weigh technical compatibility, lifetime performance and supply reliability when adopting new target solutions.

Transitioning from laboratory validation to production-scale adoption places additional emphasis on reproducibility, yield impact and process control. Therefore, a clear understanding of the relationships between application type, material selection, technology platform and form factor is critical for engineers and procurement leaders. This introduction frames the subsequent analysis by highlighting why sputtering targets are a nexus point where material innovation, process engineering and supply chain strategy converge to influence semiconductor competitiveness.

Emerging technological and supply chain shifts that are reshaping sputtering target selection across semiconductors with implications for design and sourcing

The sputtering target landscape is undergoing rapid, interconnected shifts driven by technology evolution and supply chain reconfiguration. On the technology front, demand for thin films with extreme uniformity and low defectivity has tied target development closely to advanced deposition platforms; radio-frequency sputtering, DC sputtering and ion beam approaches are being optimized in tandem with target surface engineering to meet tighter film specifications. As process engineers push the boundaries of film composition, they increasingly favor targets engineered for low particulate generation and long operational life, shifting supplier focus toward advanced ceramic and semiconductor materials as well as hybrid metallic formulations.

Concurrently, manufacturing strategies have adjusted to geopolitical and trade dynamics, prompting companies to reassess sourcing footprints and inventory strategies. This realignment affects not only raw material procurement but also the geographical distribution of target manufacturing and finishing capabilities. Suppliers are therefore investing in regional production capacity and quality control frameworks to reduce lead times and mitigate cross-border risks. These investments, in turn, create opportunities for closer collaboration between local fabs and target producers, enabling faster iteration cycles and more responsive qualification protocols.

Moreover, material innovation is accelerating. Advances in nitride and oxide ceramics, along with refined metallic alloys and semiconductor-grade germanium and silicon targets, are enabling new film functionalities and integration approaches. These material advances are complemented by refinements in form factors, where blocks, discs and tiles are engineered to suit specific equipment heads and wafer geometries. As a result, the industry is moving toward a more modular, application-driven supply model where technology choices, material properties and physical formats are optimized together to support device roadmaps.

Assessing the cumulative effects of United States tariff measures enacted in 2025 on sputtering target procurement, supply chain risk and production strategies

Tariff measures enacted by the United States in 2025 have had multifaceted effects on procurement strategies, cross-border flows and supplier relationships for sputtering targets. One immediate consequence has been a recalibration of sourcing decisions, with buyers weighing the total landed cost of targets against qualification timelines and the risk of sudden regulatory changes. For many organizations, the response has included a reassessment of supplier diversification, an increase in safety-stock policies and a renewed emphasis on nearshoring where regulatory stability can be better anticipated.

The cumulative impact of tariffs has also influenced supplier investments in regional finishing and packaging capabilities. To mitigate tariff exposure, several suppliers have evaluated alternative value chain configurations that move higher-value finishing steps into tariff-favored jurisdictions while retaining raw material processing in established facilities. This strategic segmentation of production stages reduces compliance burden and preserves technical capability, although it can increase coordination requirements and necessitate additional in-line testing to preserve film quality across distributed operations.

In addition, tariffs have accelerated conversations between equipment manufacturers, fabs and materials suppliers about long-term partnerships. These strategic relationships are focused on jointly qualifying alternative sources of material and co-developing qualification protocols that shorten time-to-production for re-sourced targets. Crucially, the tariff environment has underscored the value of transparent traceability, rigorous documentation and contractual mechanisms that allocate risk and ensure continuity of supply under shifting trade conditions. Consequently, legal, procurement and technical teams are more tightly integrated when designing resilient sourcing strategies.

Granular segmentation insights linking application, material, technology and form factor choices to end-use performance and sourcing priorities across devices

A granular understanding of segmentation reveals how application, material, technology and form factor choices intersect to shape both technical outcomes and sourcing strategies. Based on application, market considerations are framed by the differing requirements of Logic and Memory devices. Logic applications further split into High Performance and Low Power categories, each imposing distinct film conductivity, thermal stability and stress constraints that influence target chemistry and purity demands. Memory applications subdivide into DRAM and NAND flash, where the endurance, dielectric integrity and layer uniformity requirements drive selection of materials and deposition approaches that prioritize capacitive stability and interface quality.

Based on material, choices span Ceramic, Metallic and Semiconductor classes, with each class offering unique advantages and trade-offs. Ceramic targets are further divided into Nitride and Oxide types; Nitride compositions include Silicon Nitride and Titanium Nitride, prized for barrier and adhesive properties, while Oxide formulations such as Aluminum Oxide and Silicon Oxide are central to dielectric and passivation layers. Metallic materials encompass Aluminum and Titanium variants that support conductive and adhesion layers, and Semiconductor-grade targets include Germanium and Silicon, which are essential when process nodes or device architectures require elemental or compound semiconductor films with stringent purity and lattice compatibility.

Based on technology, deposition routes-DC sputtering, ion beam and RF sputtering-each impose different constraints on target backing, thermal management and erosion profiles. DC sputtering is often selected for conductive metallic targets, RF sputtering enables dielectric and insulating films with high energy density, and ion beam approaches provide precision for niche applications requiring directional control and low contamination. These technology choices affect both target design and operational lifetime.

Based on form factor, targets are produced as Block, Disc and Tile geometries to accommodate equipment mounting and thermal transfer needs. Disc form factors are further categorized by typical diameters such as 100mm and 150mm to match specific chamber and gun designs. Form factor decisions play a central role in replacement cadence, handling protocols and integration with automated tooling, and thus inform both CAPEX planning and operational workflows. Taken together, these segmentation layers reveal a complex matrix where material chemistry, device application, deposition technology and physical format must be co-optimized to meet evolving semiconductor performance and manufacturing objectives.

Regional dynamics and demand drivers across the Americas, Europe Middle East & Africa, and Asia-Pacific shaping logistics and adoption

Regional dynamics shape both demand characteristics and the practicalities of supplying sputtering targets, with implications that vary across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, fabrication investments and a push for nearer-term supply resilience have elevated the importance of local finishing capacities and fast-response logistics that can support just-in-time replacement cycles. This has encouraged a preference for suppliers able to offer rapid turnaround, traceable material provenance and collaborative qualification support.

In Europe, Middle East & Africa, regulatory frameworks, materials standards and strong advanced packaging ecosystems place a premium on compliance, sustainability credentials and supplier transparency. Firms in this region often prioritize partners who can demonstrate rigorous quality systems, environmental stewardship and alignment with regional process nodes, which influences the adoption patterns for ceramic nitrides, oxide dielectrics and high-purity metallic targets.

Asia-Pacific remains a critical hub for high-volume wafer production and materials innovation, where close proximity between target manufacturers and fabs supports tighter co-development cycles. The region's deep supply clusters enable faster iteration on materials such as titanium nitride and aluminum oxide, and they facilitate scale-up from pilot to mass production. Across all regions, these geographic differences feed back into supplier strategies for inventory staging, qualification support and R&D partnerships, with each territory presenting distinct trade-offs between speed, cost and strategic alignment.

Competitive intelligence and strategic positioning of leading sputtering target suppliers with emphasis on materials innovation, technology breadth and resilience

Competitive positioning among suppliers is increasingly defined by the intersection of materials expertise, technology breadth and operational resilience. Leading producers are distinguishing themselves through investments in advanced ceramic formulations, low-particulate manufacturing processes and integrated quality systems that reduce variability and accelerate supplier qualification. These capabilities are complemented by diversified form factor portfolios that allow suppliers to support a wider set of deposition platforms and wafer sizes, which in turn reduces switching friction for fabs evaluating alternate sources.

Strategic supplier behaviors also include targeted investments in regional finishing operations to shorten lead times and avoid tariff exposure, as well as the development of co-engineered solutions that pair target chemistries with optimized backing plates and thermal management features. Partnerships between suppliers and equipment makers are also becoming more prevalent, enabling tighter integration of target design with gun geometry and power delivery characteristics. In this context, companies that can demonstrate consistent lifecycle performance, transparent traceability and collaborative development pathways are more likely to secure long-term preferred supplier status among device manufacturers.

Finally, a supplier's capacity to support technical troubleshooting, deliver application-specific test data and offer scalable manufacturing ramp-ups has become a competitive differentiator. Buyers increasingly evaluate vendors not just on price and lead time, but also on the depth of technical support, qualification documentation and risk-sharing arrangements they bring to the table. Thus, supplier strategy must combine material innovation with pragmatic commercial and operational commitments to maintain relevance in a demanding customer environment.

Practical strategic recommendations for semiconductor manufacturers, materials suppliers and procurement teams to optimize target selection and sourcing resilience

Industry leaders can take several practical steps to strengthen performance and resilience across sputtering target sourcing and application. First, align procurement and process engineering teams to create integrated qualification roadmaps that reduce time-to-adoption for new target materials while preserving yield and reliability. Proactive collaboration enables parallel validation of material batches, equipment parameters and metrology, thereby shortening the feedback loop between supplier and fab.

Second, diversify sourcing across material classes and geographies while maintaining stringent technical acceptance criteria. By qualifying multiple suppliers for critical target types-ceramic nitrides, oxide dielectrics, metallic aluminum or semiconductor-grade silicon and germanium-organizations reduce single-source dependency and gain leverage to negotiate service levels and contingency support. Where possible, structure commercial agreements to include expedited production windows and regional finishing provisions that can be triggered under supply stress.

Third, invest in longer-term partnerships that co-fund application-specific R&D and pilot production runs. Joint development agreements that align supplier roadmaps with device node requirements help ensure that emerging target chemistries and form factors are fit-for-purpose when scaled to production. Complementarily, strengthen traceability systems and documentation practices to shorten qualification cycles and satisfy regulatory and customer audit requirements. Taken together, these actions create a practical framework for balancing technical performance, supply continuity and commercial predictability.

Rigorous research methodology combining primary industry interviews, materials analysis, technology assessment and supply chain mapping and verification

This analysis is grounded in a mixed-method research approach that combines primary stakeholder engagement with technical materials review and supply chain mapping. Primary inputs were gathered through structured interviews with process engineers, procurement leaders and materials scientists to capture real-world constraints, qualification practices and supplier evaluation criteria. These conversations were supplemented by technical reviews of target compositions and deposition interactions to translate material properties into process implications.

In parallel, secondary validation was conducted through analysis of supplier technical documentation, equipment vendor guidelines and publicly available patent and engineering literature to corroborate trends in materials innovation and form factor evolution. Supply chain mapping identified critical nodes, finishing steps and potential bottlenecks that influence lead time and risk exposure. Throughout the methodology, emphasis was placed on reproducibility and traceability: source materials were cross-referenced, and analytical assumptions were documented to facilitate independent verification and targeted follow-up research.

The approach balances technical depth with practical applicability, enabling decision-makers to evaluate supplier capabilities, assess technology trade-offs and design sourcing strategies informed by both engineering realities and operational constraints.

Strategic conclusion synthesizing material, technology, segmentation and regional implications to guide strategic decisions amid shifting trade and supply dynamics

Synthesizing the technical, commercial and regional strands of the analysis yields clear strategic implications for stakeholders engaged with sputtering targets. Material innovation-particularly in nitride and oxide ceramics, refined metallic alloys and semiconductor-grade targets-continues to unlock performance enhancements, yet these gains require parallel investments in supplier qualification and process integration. Therefore, organizations should prioritize collaborative development models that reduce integration risk and accelerate time-to-production for new chemistries.

At the same time, technology choices among DC sputtering, RF sputtering and ion beam approaches will remain tightly coupled to target design, calling for synchronized engineering between equipment vendors and target manufacturers. Form factor decisions, whether block, disc or tile, influence operational workflows and replacement economics and must be considered early in equipment procurement and maintenance planning. Geopolitical and tariff-driven pressures highlight the importance of regional production capabilities and contractual provisions that ensure continuity under changing trade regimes.

In sum, the pathway to operational advantage lies in aligning materials strategy with process needs, diversifying and de-risking supply, and forging long-term technical partnerships. These steps enable fabs and materials suppliers to respond more quickly to device roadmap shifts, maintain yield consistency and protect critical manufacturing timelines amid a fluid global trade landscape.

Product Code: MRR-4F7A6D4FDAC3

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Sputtering Target for Semiconductor Market, by Material

  • 8.1. Ceramic
    • 8.1.1. Nitride
      • 8.1.1.1. Silicon Nitride
      • 8.1.1.2. Titanium Nitride
    • 8.1.2. Oxide
      • 8.1.2.1. Aluminum Oxide
      • 8.1.2.2. Silicon Oxide
  • 8.2. Metallic
    • 8.2.1. Aluminum
    • 8.2.2. Titanium
  • 8.3. Semiconductor
    • 8.3.1. Germanium
    • 8.3.2. Silicon

9. Sputtering Target for Semiconductor Market, by Technology

  • 9.1. Dc Sputtering
  • 9.2. Ion Beam
  • 9.3. Rf Sputtering

10. Sputtering Target for Semiconductor Market, by Form Factor

  • 10.1. Block
  • 10.2. Disc
    • 10.2.1. 100Mm
    • 10.2.2. 150Mm
  • 10.3. Tile

11. Sputtering Target for Semiconductor Market, by Application

  • 11.1. Logic
    • 11.1.1. High Performance
    • 11.1.2. Low Power
  • 11.2. Memory
    • 11.2.1. Dram
    • 11.2.2. Nand Flash

12. Sputtering Target for Semiconductor Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Sputtering Target for Semiconductor Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Sputtering Target for Semiconductor Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Sputtering Target for Semiconductor Market

16. China Sputtering Target for Semiconductor Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. American Elements
  • 17.6. JX Nippon Mining & Metals Co., Ltd.
  • 17.7. Konfoong Materials International Co., Ltd.
  • 17.8. Kurt J. Lesker Company
  • 17.9. LG Chem, Ltd.
  • 17.10. Materion Corporation
  • 17.11. Mitsubishi Materials Corporation
  • 17.12. Mitsui Mining & Smelting Co., Ltd.
  • 17.13. Plasmaterials, Inc.
  • 17.14. SCI Engineered Materials, Inc.
  • 17.15. Shin-Etsu Chemical Co., Ltd.
  • 17.16. Sumitomo Chemical Co., Ltd.
  • 17.17. Tanaka Kikinzoku Kogyo K.K.
  • 17.18. Umicore NV
Product Code: MRR-4F7A6D4FDAC3

LIST OF FIGURES

  • FIGURE 1. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON NITRIDE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON NITRIDE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON NITRIDE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TITANIUM NITRIDE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TITANIUM NITRIDE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TITANIUM NITRIDE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ALUMINUM OXIDE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ALUMINUM OXIDE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ALUMINUM OXIDE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON OXIDE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON OXIDE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON OXIDE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ALUMINUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ALUMINUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ALUMINUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TITANIUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TITANIUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TITANIUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY GERMANIUM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY GERMANIUM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY GERMANIUM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SILICON, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DC SPUTTERING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DC SPUTTERING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DC SPUTTERING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ION BEAM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ION BEAM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY ION BEAM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY RF SPUTTERING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY RF SPUTTERING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY RF SPUTTERING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY BLOCK, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY BLOCK, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY BLOCK, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY 100MM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY 100MM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY 100MM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY 150MM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY 150MM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY 150MM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TILE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TILE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TILE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY HIGH PERFORMANCE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 80. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY HIGH PERFORMANCE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 81. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY HIGH PERFORMANCE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 82. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOW POWER, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 83. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOW POWER, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 84. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOW POWER, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 85. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 86. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 87. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 88. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 89. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DRAM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 90. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DRAM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 91. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DRAM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 92. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NAND FLASH, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 93. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NAND FLASH, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 94. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NAND FLASH, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 95. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 96. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 97. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 98. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 99. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 100. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 101. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 102. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 103. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 104. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 105. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 106. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 107. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 108. AMERICAS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 109. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 110. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 111. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 112. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 113. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 114. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 115. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 116. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 117. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 118. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 119. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 120. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 121. NORTH AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 122. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 123. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 124. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 125. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 126. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 127. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 128. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 129. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 130. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 131. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 132. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 133. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 134. LATIN AMERICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 135. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 136. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 137. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 138. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 139. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 140. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 141. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 142. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 143. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 144. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 145. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 146. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 147. EUROPE, MIDDLE EAST & AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 148. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 149. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 150. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 151. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 152. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 153. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 154. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 155. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 156. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 157. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 158. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 159. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 160. EUROPE SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 161. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 162. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 163. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 164. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 165. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 166. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 167. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 168. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 169. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 170. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 171. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 172. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 173. MIDDLE EAST SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 174. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 175. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 176. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 177. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 178. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 179. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 180. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 181. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 182. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 183. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 184. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 185. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 186. AFRICA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 187. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 188. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 189. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 190. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 191. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 192. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 193. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 194. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 195. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 196. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 197. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 198. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 199. ASIA-PACIFIC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 200. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 201. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 202. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 203. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 204. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 205. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 206. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 207. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 208. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 209. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 210. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 211. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 212. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 213. ASEAN SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 214. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 215. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 216. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 217. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 218. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 219. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 220. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 221. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 222. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 223. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 224. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 225. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 226. GCC SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 227. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 228. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 229. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 230. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 231. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 232. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 233. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 234. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 235. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 236. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 237. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 238. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 239. EUROPEAN UNION SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 240. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 241. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 242. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 243. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 244. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 245. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 246. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 247. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 248. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 249. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 250. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 251. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 252. BRICS SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 253. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 254. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 255. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 256. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 257. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 258. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 259. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 260. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 261. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 262. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 263. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 264. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 265. G7 SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 266. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 267. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 268. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 269. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 270. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 271. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 272. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 273. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 274. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 275. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 276. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 277. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 278. NATO SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 279. GLOBAL SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 280. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 281. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 282. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 283. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 284. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 285. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 286. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 287. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 288. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)
  • TABLE 289. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY DISC, 2018-2032 (USD MILLION)
  • TABLE 290. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 291. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY LOGIC, 2018-2032 (USD MILLION)
  • TABLE 292. UNITED STATES SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MEMORY, 2018-2032 (USD MILLION)
  • TABLE 293. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 294. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY MATERIAL, 2018-2032 (USD MILLION)
  • TABLE 295. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY CERAMIC, 2018-2032 (USD MILLION)
  • TABLE 296. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY NITRIDE, 2018-2032 (USD MILLION)
  • TABLE 297. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY OXIDE, 2018-2032 (USD MILLION)
  • TABLE 298. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY METALLIC, 2018-2032 (USD MILLION)
  • TABLE 299. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY SEMICONDUCTOR, 2018-2032 (USD MILLION)
  • TABLE 300. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY TECHNOLOGY, 2018-2032 (USD MILLION)
  • TABLE 301. CHINA SPUTTERING TARGET FOR SEMICONDUCTOR MARKET SIZE, BY FORM FACTOR, 2018-2032 (USD MILLION)

T

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!