Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1932051

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1932051

Aerospace Buck-Boost Converter Market by End Use, Input Voltage Range, Power Rating, Output Voltage - Global Forecast 2026-2032

PUBLISHED:
PAGES: 195 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Aerospace Buck-Boost Converter Market was valued at USD 174.94 million in 2025 and is projected to grow to USD 189.99 million in 2026, with a CAGR of 6.74%, reaching USD 276.27 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 174.94 million
Estimated Year [2026] USD 189.99 million
Forecast Year [2032] USD 276.27 million
CAGR (%) 6.74%

How converging reliability requirements and system-level power demands are redefining converter selection and engineering priorities across aerospace platforms

The emergence of higher-efficiency power management requirements across aerospace platforms has placed buck-boost converter design and supply squarely at the center of contemporary systems engineering discourse. As propulsion, avionics, sensor suites, and payloads demand stable power across variable voltages and mission phases, designers are increasingly specifying converters capable of seamless step-up and step-down operation with minimal losses, robust thermal performance, and stringent electromagnetic compatibility. This confluence of technical drivers compels program managers and system architects to reassess component selection criteria, reliability demonstration strategies, and supplier engagement models.

Transitioning from legacy linear regulation and discrete conversion topologies to integrated buck-boost solutions delivers tangible benefits in weight, volume, and power loss reduction, thereby enabling novel vehicle concepts and payload capabilities. Moreover, the accelerating adoption of electric and more-electric architectures in both military and commercial aircraft, as well as evolving spacecraft power buses, underscores the critical role of flexible conversion technologies. Consequently, stakeholders must balance design innovation with qualification rigor, ensuring that power modules meet aerospace temperature cycles, vibration profiles, and long-term degradation expectations while enabling performance improvements at the system level.

Key technological, supply-chain, and integration trends that are reshaping aerospace buck-boost converter development and procurement strategies

The aerospace power landscape is undergoing transformative shifts driven by several interlocking trends that reconfigure supplier relationships, design priorities, and regulatory expectations. First, electrification of key subsystems is extending beyond traditional boundaries, elevating voltage diversity and transient profiles that converters must tolerate. As a result, design teams are prioritizing devices that offer adaptive control, wide input ranges, and enhanced transient response to support distributed power architectures. Second, increasing emphasis on lifecycle sustainment and maintainability is prompting manufacturers to favor modular, field-replaceable power modules with standardized interfaces and diagnostic telemetry.

Furthermore, advanced materials and component technologies-such as wide-bandgap semiconductors, monolithic power stages, and additive manufacturing for thermal management-are enabling higher power densities and lower losses, thereby altering cost-performance trade-offs. Concurrently, supply chain resilience has become a board-level concern; organizations now factor lead-time variability, second-source qualification complexity, and obsolescence risk into procurement strategies. Taken together, these dynamics are reshaping development roadmaps and accelerating collaboration between power-electronics specialists, airframe integrators, and mission systems teams to ensure seamless integration and robust operational performance.

How United States tariff measures implemented in 2025 are reshaping supplier selection, sourcing strategies, and domestic manufacturing priorities in aerospace power electronics

Tariff policies enacted by the United States in 2025 introduced new considerations for procurement and supplier selection across the aerospace electronics ecosystem. These measures have influenced sourcing strategies by altering landed costs for select imported components and assemblies, thereby driving buyers to reassess the total cost of ownership and to pursue domestic qualification where feasible. Program planners responded by intensifying supplier risk assessments, prioritizing dual-source strategies, and accelerating domestic industrial partnerships to mitigate exposure to tariff-driven supply shocks.

In parallel, the policy environment incentivized investment in local manufacturing capabilities for critical passive components and power-stage modules. This shift catalyzed reconfiguration of global supply chains and prompted tier-one integrators to re-evaluate inventory policies and just-in-time practices. While tariffs did not change fundamental engineering requirements, they did elevate the importance of contractual flexibility, long-term supplier development agreements, and co-investment arrangements that align manufacturing footprint with program sustainment timelines. Therefore, program and procurement teams must incorporate tariff sensitivity into lifecycle cost models and qualification roadmaps to preserve schedule and budget integrity.

A comprehensive segmentation framework linking end use, input voltage, power rating, and output voltage to design choices and procurement priorities

A nuanced segmentation framework reveals how performance demands and application contexts drive distinct requirements for buck-boost converter selection and development. Based on End Use, applications span Commercial Aircraft, Military Aircraft, and Spacecraft, with the Commercial Aircraft further differentiated into Narrow Body, Regional Jets, and Wide Body platforms, Military Aircraft detailed into Fighter Jets, Transport Aircraft, and Unmanned Aerial Vehicles, and Spacecraft split between Crewed Spacecraft and Satellites. This taxonomy underscores divergent priorities: commercial airliners emphasize long-term reliability and maintainability, military platforms prioritize ruggedness and mission-specific interfaces, and spacecraft demand radiation tolerance, mass efficiency, and extended operational life.

Based on Input Voltage Range, designs are organized across 12-48V, 3-12V, and 48-120V domains. The 12-48V band is further parsed into 12-28V and 28-48V segments, the 3-12V band into 3-5V and 5-12V segments, and the 48-120V band into 48-75V and 75-120V ranges. Each voltage bucket implies different semiconductor choices, bus protection strategies, and isolation requirements, which in turn affect topology selection and thermal design. Based on Power Rating, converters are examined across 10-50W, sub-10W, and above-50W classes, with 10-50W segmented into 10-25W and 25-50W, the sub-10W category divided into 5-10W and below 5W, and the above-50W group split into 50-100W and greater than 100W. Power class influences cooling approaches, packaging constraints, and qualification corridors.

Based on Output Voltage, market and design considerations are framed around 5-12V, below 5V, and above 12V outputs. The 5-12V outputs include discrete 12V and 5V rails, outputs below 5V reference common digital rails such as 1.8V and 3.3V, while outputs above 12V are categorized into 12-24V and greater than 24V ranges. Output-voltage segmentation drives component selection for regulation loops, pass elements, and post-regulation strategies to meet transient and accuracy specifications. Collectively, this segmentation matrix enables engineers and procurement teams to map converter offerings to platform-specific electrical architectures, mission profiles, and sustainment strategies.

Regional dynamics and strategic production choices across the Americas, Europe Middle East & Africa, and Asia-Pacific that influence converter adoption and qualification

Regional dynamics shape technology adoption, regulatory compliance, and supply-chain configuration for aerospace buck-boost converters across distinct geographies. In the Americas, industry momentum concentrates on integration with advanced avionics suites and support for next-generation military programs, prompting investments in local qualification labs and collaborative test facilities. This region's emphasis on rapid certification cycles and close proximity to major integrators fosters tight feedback loops between converter designers and system architects, enabling accelerated iteration of performance and reliability features.

Europe, the Middle East & Africa present a heterogeneous landscape where regulatory frameworks, legacy fleet composition, and defense procurement cycles vary significantly. Stakeholders in this region prioritize interoperability with diverse airframes, compliance with stringent electromagnetic and environmental standards, and partnerships that balance innovation with long-term sustainment commitments. The emphasis on modular designs and retrofit-friendly packages reflects the need to modernize aging fleets while accommodating regional certification regimes.

Asia-Pacific demonstrates strong growth in both commercial aviation production and space program activity, driving demand for converters that support high-volume manufacturing and cost-competitive qualification. Regional supply chains here benefit from significant component manufacturing capacity, but integrators must carefully manage intellectual property, quality-assurance practices, and cross-border logistics to maintain program stability. Taken together, these regional perspectives inform strategic decisions on where to locate production, how to structure technical partnerships, and which compliance pathways to prioritize.

Competitive positioning, collaboration strategies, and service-led differentiation that define success for companies delivering aerospace buck-boost converter solutions

Competitive dynamics in the buck-boost converter arena reflect a mix of specialized power-electronics suppliers, systems integrators, and vertically integrated avionics firms. Leading organizations differentiate through a combination of technological depth, rigorous qualification histories, and the capacity to provide systems-level support across integration, testing, and sustainment. Firms with strong engineering services and in-house testing laboratories often win early-stage design influence, which can translate into longer-term supply agreements as platforms move into production and sustainment.

Partnerships and strategic alliances are increasingly common, as semiconductor innovators, packaging specialists, and thermal-management companies collaborate to accelerate time-to-certification for new topologies. Intellectual property around control algorithms, protection schemes, and radiation-hardening approaches remains a key source of competitive advantage. Meanwhile, aftermarket services-such as life-extension analyses, obsolescence management, and field-failure analytics-provide differentiation for companies aiming to capture enduring revenue streams beyond initial equipment sales. Therefore, competitive strategies that blend product innovation with comprehensive support offerings and robust supplier networks position companies to meet demanding aerospace procurement criteria.

Actionable strategic and technical initiatives for engineering teams and procurement leaders to accelerate qualification and secure resilient supply chains

Industry leaders should adopt a dual-track approach that advances technical capability while strengthening supply-chain resilience. First, invest in next-generation semiconductor and packaging technologies that deliver higher switching frequencies, superior thermal conductivity, and improved electromagnetic compatibility, while ensuring designs remain compatible with established qualification pathways. By validating wide-bandgap devices and advanced thermal solutions in representative test environments early in the development cycle, organizations can shorten integration timelines and reduce late-stage redesign risk.

Second, implement supply-chain strategies that combine strategic domestic partnerships with vetted international suppliers to mitigate tariff and logistics exposure. Establishing formal supplier development programs, long-term purchase agreements with capacity commitments, and modular qualification processes will help maintain continuity of supply without sacrificing performance targets. Additionally, integrate comprehensive diagnostic telemetry and predictive maintenance capabilities into converter designs to support condition-based maintenance and reduce unscheduled downtime. Finally, pursue active engagement with certification authorities and prime integrators to align test protocols and data requirements, thereby smoothing the path from prototype to certified production.

Rigorous mixed-methods research combining technical interviews, patent analysis, supplier audits, and laboratory validation to ensure robust insights and actionable intelligence

The research underpinning this report employed a mixed-methods approach combining primary technical interviews, component-level patent mapping, supplier capability assessments, and laboratory validation review. Primary input was gathered through in-depth discussions with design engineers, program managers, and procurement leads across commercial, military, and space programs to capture real-world performance requirements and qualification pain points. Complementing these interviews, a detailed review of recent patents and published technical papers provided a line of sight into emergent topologies and control strategies shaping next-generation converters.

Supply-chain analysis incorporated supplier audits, vendor scorecards, and trade policy monitoring to assess manufacturing footprints and risk exposures. Laboratory validation review synthesized publicly available test protocols and debriefs from qualification exercises to evaluate common failure modes and test coverage. Throughout the research cycle, findings were triangulated across multiple sources to ensure robustness, and methodological limitations were explicitly documented to guide interpretation. This methodology enables stakeholders to weigh technical trade-offs and procurement implications with greater confidence and situational awareness.

Synthesis of technical, procurement, and regional dynamics that shape strategic choices for aerospace buck-boost converter development and program sustainment

Aerospace buck-boost converters stand at the intersection of evolving mission requirements, technological innovation, and shifting supply-chain realities. The imperative to deliver high-efficiency, compact, and resilient power conversion has catalyzed design shifts toward wide input-range topologies, advanced semiconductor adoption, and modular packaging that simplifies integration and sustainment. At the same time, policy changes and regional manufacturing dynamics are motivating firms to re-evaluate sourcing strategies, qualification cadence, and aftermarket support models.

Looking across end uses, voltage domains, power classes, and regional contexts, it is clear that success in this sector will depend on marrying engineering excellence with pragmatic supply-chain planning. Organizations that invest in demonstrable qualification pathways, cultivate strategic supplier relationships, and embed diagnostic capabilities into converter products will be better positioned to meet the demands of modern airframes and spacecraft. Ultimately, converter selection and development are not merely component decisions but strategic choices that influence aircraft performance, lifecycle costs, and mission resilience.

Product Code: MRR-7B550E008F47

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Aerospace Buck-Boost Converter Market, by End Use

  • 8.1. Commercial Aircraft
    • 8.1.1. Narrow Body
    • 8.1.2. Regional Jets
    • 8.1.3. Wide Body
  • 8.2. Military Aircraft
    • 8.2.1. Fighter Jets
    • 8.2.2. Transport Aircraft
    • 8.2.3. Unmanned Aerial Vehicles
  • 8.3. Spacecraft
    • 8.3.1. Crewed Spacecraft
    • 8.3.2. Satellites

9. Aerospace Buck-Boost Converter Market, by Input Voltage Range

  • 9.1. 12-48V
  • 9.2. 3-12V
  • 9.3. 48-120V

10. Aerospace Buck-Boost Converter Market, by Power Rating

  • 10.1. 10-50W
  • 10.2. More Than 10W
  • 10.3. Less Than 50W

11. Aerospace Buck-Boost Converter Market, by Output Voltage

  • 11.1. 5-12V
  • 11.2. Less Than 5V
  • 11.3. More Than 12V

12. Aerospace Buck-Boost Converter Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Aerospace Buck-Boost Converter Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Aerospace Buck-Boost Converter Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Aerospace Buck-Boost Converter Market

16. China Aerospace Buck-Boost Converter Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Allegro MicroSystems, Inc.
  • 17.6. Analog Devices, Inc.
  • 17.7. Bel Fuse Inc.
  • 17.8. Crane Aerospace & Electronics
  • 17.9. CUI Inc.
  • 17.10. Data Device Corporation
  • 17.11. Delta Electronics, Inc.
  • 17.12. Infineon Technologies AG
  • 17.13. Interpoint Corporation
  • 17.14. Maxim Integrated Products, Inc.
  • 17.15. Microchip Technology Inc.
  • 17.16. Monolithic Power Systems, Inc.
  • 17.17. Murata Manufacturing Co., Ltd.
  • 17.18. ON Semiconductor Corporation
  • 17.19. Renesas Electronics Corporation
  • 17.20. STMicroelectronics N.V.
  • 17.21. Texas Instruments Incorporated
  • 17.22. TT Electronics plc
  • 17.23. Vicor Corporation
  • 17.24. XP Power Ltd.
Product Code: MRR-7B550E008F47

LIST OF FIGURES

  • FIGURE 1. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY NARROW BODY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY NARROW BODY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY NARROW BODY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY REGIONAL JETS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY REGIONAL JETS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY REGIONAL JETS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY WIDE BODY, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY WIDE BODY, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY WIDE BODY, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY FIGHTER JETS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY FIGHTER JETS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY FIGHTER JETS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY TRANSPORT AIRCRAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY TRANSPORT AIRCRAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY TRANSPORT AIRCRAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY UNMANNED AERIAL VEHICLES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY UNMANNED AERIAL VEHICLES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY UNMANNED AERIAL VEHICLES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY CREWED SPACECRAFT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY CREWED SPACECRAFT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY CREWED SPACECRAFT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SATELLITES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SATELLITES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SATELLITES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 12-48V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 12-48V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 12-48V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 3-12V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 3-12V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 3-12V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 48-120V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 48-120V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 48-120V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 10-50W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 10-50W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 10-50W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MORE THAN 10W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MORE THAN 10W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MORE THAN 10W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY LESS THAN 50W, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY LESS THAN 50W, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY LESS THAN 50W, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 5-12V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 5-12V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY 5-12V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY LESS THAN 5V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY LESS THAN 5V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY LESS THAN 5V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MORE THAN 12V, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MORE THAN 12V, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MORE THAN 12V, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 70. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 71. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 72. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 73. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 74. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 75. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 76. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 77. AMERICAS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 78. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 79. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 80. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 81. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 82. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 83. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 84. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 85. NORTH AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 86. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 87. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 88. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 89. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 90. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 91. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 92. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 93. LATIN AMERICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 94. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 95. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 96. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 97. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 98. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 99. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 100. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 101. EUROPE, MIDDLE EAST & AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 102. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 103. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 104. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 105. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 106. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 107. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 108. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 109. EUROPE AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 110. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 111. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 112. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 113. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 114. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 115. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 116. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 117. MIDDLE EAST AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 118. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 119. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 120. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 121. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 122. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 123. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 124. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 125. AFRICA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 126. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 127. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 128. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 129. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 130. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 131. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 132. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 133. ASIA-PACIFIC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 134. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 135. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 136. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 137. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 138. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 139. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 140. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 141. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 142. ASEAN AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 143. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 144. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 145. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 146. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 147. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 148. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 149. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 150. GCC AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 151. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 152. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 153. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 154. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 155. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 156. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 157. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 158. EUROPEAN UNION AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 159. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 160. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 161. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 162. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 163. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 164. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 165. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 166. BRICS AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 167. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 168. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 169. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 170. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 171. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 172. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 173. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 174. G7 AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 175. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 176. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 177. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 178. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 179. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 180. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 181. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 182. NATO AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 183. GLOBAL AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 184. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 185. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 186. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 187. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 188. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 189. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 190. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 191. UNITED STATES AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
  • TABLE 192. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 193. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY END USE, 2018-2032 (USD MILLION)
  • TABLE 194. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY COMMERCIAL AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 195. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY MILITARY AIRCRAFT, 2018-2032 (USD MILLION)
  • TABLE 196. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY SPACECRAFT, 2018-2032 (USD MILLION)
  • TABLE 197. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY INPUT VOLTAGE RANGE, 2018-2032 (USD MILLION)
  • TABLE 198. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY POWER RATING, 2018-2032 (USD MILLION)
  • TABLE 199. CHINA AEROSPACE BUCK-BOOST CONVERTER MARKET SIZE, BY OUTPUT VOLTAGE, 2018-2032 (USD MILLION)
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!