Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: 360iResearch | PRODUCT CODE: 1932351

Cover Image

PUBLISHER: 360iResearch | PRODUCT CODE: 1932351

Special Engineering Plastics for 5G Market by Resin Type, Process, Application, End Use Industry - Global Forecast 2026-2032

PUBLISHED:
PAGES: 199 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF, Excel & 1 Year Online Access (Single User License)
USD 3939
PDF, Excel & 1 Year Online Access (2-5 User License)
USD 4249
PDF, Excel & 1 Year Online Access (Site License)
USD 5759
PDF, Excel & 1 Year Online Access (Enterprise User License)
USD 6969

Add to Cart

The Special Engineering Plastics for 5G Market was valued at USD 2.42 billion in 2025 and is projected to grow to USD 2.62 billion in 2026, with a CAGR of 7.88%, reaching USD 4.12 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 2.42 billion
Estimated Year [2026] USD 2.62 billion
Forecast Year [2032] USD 4.12 billion
CAGR (%) 7.88%

How emerging electrical, thermal, and mechanical demands in 5G-driven devices are redefining polymer selection, design validation, and supply chain integration

The rollout of next-generation wireless networks has transformed the technical requirements for enclosure materials, component insulation, and electromagnetic performance across both infrastructure and consumer devices. As radio frequencies push higher and power densities increase, engineering plastics are now central to solving a convergent set of challenges: maintaining signal integrity, managing heat dissipation, minimizing dielectric loss, and achieving mechanical robustness under constrained form factors. These demands are prompting material scientists, OEMs, and component suppliers to re-evaluate material selection criteria and to prioritize resins that deliver a balanced portfolio of electrical, thermal, and mechanical properties.

In this context, design teams must reconcile conflicting imperatives: the need for ultra-low dielectric constant and dissipation factor versus requirements for flame retardancy, dimensional stability, and manufacturability at scale. Consequently, the development cycle now extends beyond polymer selection to include compounding strategies, additive packages, and process validation. At the same time, supply chain dynamics and procurement frameworks have become integral to design choices, because qualification timelines and long-term availability shape roadmap decisions. Therefore, an integrated approach that combines materials engineering, process optimization, and strategic sourcing is essential for delivering reliable 5G-capable modules and housings that meet both performance and cost objectives.

The confluence of thermal, dielectric, regulatory, and sourcing pressures is accelerating novel polymer adoption, regional supply resilience, and closer supplier-engineer collaboration

The landscape for specialty engineering plastics has experienced several transformative shifts driven by technological evolution, regulatory pressures, and changing procurement priorities. One of the most salient shifts is the migration toward resins that offer a combination of low dielectric loss and high thermal conductivity, enabling smaller RF front-end modules and denser antenna arrays without compromising signal fidelity. This technical pivot has been accompanied by a parallel shift in manufacturing, where modularization and multi-material assemblies encourage closer collaboration between polymer formulators and component integrators.

Moreover, sustainability and circularity considerations are increasingly influencing formulation choices and end-of-life strategies. Regulatory developments have tightened requirements around flame retardants and restricted substances, which in turn have spurred innovation in halogen-free systems and reinforced polyarylether-based solutions. In addition, cost-containment pressures and tariff-driven input cost volatility have accelerated interest in regionalization of supply chains and nearshoring of critical compounding and molding capacity. As a result, strategic sourcing now incorporates not only price and quality metrics but also geopolitical risk indicators, local compliance capabilities, and the ability to support accelerated qualification timelines. Consequently, companies that blend materials innovation with resilient supply chain design will gain a competitive advantage as the 5G value chain matures.

Cumulative United States tariff adjustments in 2025 have amplified sourcing volatility and reshaped supplier qualification, material substitution, and contractual risk allocation

The cumulative tariff adjustments implemented by the United States in 2025 have introduced a new layer of complexity for organizations that specify and procure specialty engineering plastics for 5G applications. These measures have amplified input cost volatility for certain resin families and compounded lead-time challenges for hi-performance compounds that are sourced from geographically concentrated suppliers. In response, manufacturers and OEMs have had to reassess sourcing strategies, reconfigure supplier panels, and in many cases lock in longer-term supply agreements to stabilize availability and pricing exposures.

Beyond the immediate cost implications, the tariffs have influenced strategic decision-making around qualification and design choices. For instance, procurement teams have revisited the trade-offs between using higher-performance imported grades and domestically available alternatives that may offer competitive long-term reliability when optimized through compounding. At the same time, companies have accelerated efforts to qualify second-source suppliers and to expand in-region compounding and molding capabilities in order to reduce cross-border shipment dependencies and mitigate tariff pass-through risks. These shifts have also driven greater emphasis on contractual mechanisms such as index-linked pricing, material substitution clauses, and safety-stock arrangements.

Importantly, tariffs have heightened the priority of technical flexibility: design-for-material-substitution practices, modular component architectures that allow last-mile material swaps, and extensive validation protocols that shorten time-to-acceptance for alternate grades. In sum, the tariff environment has not only affected pricing but has reshaped supply chain architecture and elevated the strategic value of upstream collaboration between OEMs and materials suppliers.

Granular segmentation across resin chemistry, application types, processing routes, and industry verticals reveals distinct qualification pathways and engineering trade-offs

A nuanced segmentation of the specialty engineering plastics market reveals differentiated technical requirements and qualification pathways that should inform product development and procurement strategies. Based on resin type, the landscape is examined across PEEK, PEI, PES, PPS, and PSU. Within the PEEK family, carbon-filled, glass-filled, and unfilled variants present distinct balances between stiffness, thermal conductivity, and electromagnetic transparency, making selection dependent on whether a component requires structural reinforcement or improved heat spreading without compromising dielectric performance. The PEI cohort includes flame retardant, high flow, and standard formulations; the flame retardant grades are frequently prioritized for base station housings that must meet stringent fire-safety standards, while high flow variants facilitate thin-wall smartphone housing designs and complex connector geometries. PES appears across general purpose and reinforced grades, where reinforced variants are used when dimensional stability is critical under thermal cycling.

PPS shows up in both glass-filled and unfilled forms, with glass-filled PPS favored in connector bodies and switch components for its dimensional control and chemical resistance, while unfilled PPS suits low-loss filter frames. PSU offerings, categorized into general purpose and reinforced, play a role where impact resistance and continuous-use thermal performance are necessary. Turning to application segmentation, the market spans antenna housings, connectors, filters, modules, and switches. Antenna housings split across base station and smartphone housings, creating divergent priorities between large infrastructure enclosures that require thermal management and compact handset shells that demand thin-wall performance and cosmetic finish. Connectors bifurcate into optical and RF connectors, each with distinct insertion loss, abrasion, and dielectric stability requirements. Filters divide into bandpass, high pass, and low pass types, with material selection driven by frequency band and Q-factor needs. Module segmentation comprises power and RF modules, where thermal conductivity and dielectric stability are both pivotal, and switches separate into optical and RF switches, each imposing specific mechanical endurance and signal-loss constraints.

Process segmentation spans 3D printing, blow molding, compression molding, extrusion, and injection molding. Within additive manufacturing, FDM and SLS approaches offer rapid prototyping and low-volume customization advantages but demand feedstock materials with controlled thermal behavior. Blow molding includes extrusion blow and injection blow molding, which suit different hollow-part geometries. Compression molding encompasses reaction injection and transfer molding, approaches often used for high-performance composites and encapsulation. Extrusion covers profile and sheet extrusion for parts like waveguide substrates and insulation layers. Injection molding includes multi-shot and two-shot molding techniques that enable complex overmolded assemblies critical to modern RF modules. Lastly, end-use industry segmentation includes automotive, consumer devices, defense & aerospace, and telecom infrastructure. Automotive applications such as autonomous driving sensors and EV communication modules require materials that withstand vibration, temperature extremes, and regulatory scrutiny. Consumer device segments, notably smartphones and tablets, prioritize thin-wall aesthetics, tactile finish, and antenna compatibility. Defense & aerospace applications including military radar and satellites demand the highest levels of thermal endurance, radiation resistance, and qualification traceability. Telecom infrastructure customers, encompassing OEMs and operators, often require materials that can be rapidly qualified at scale and meet long operational lifetimes.

Regional supply capacity, regulatory regimes, and manufacturing ecosystems create divergent procurement priorities across the Americas, EMEA, and Asia-Pacific

Regional dynamics exert a profound influence on supply chain resilience, regulatory compliance, and commercial strategy for specialty engineering plastics. In the Americas, suppliers and manufacturers benefit from relatively proximate markets and strong downstream integration with both telecom infrastructure and automotive OEMs; however, regional capacity constraints for some high-performance polymers have led to strategic investments in local compounding and testing laboratories. Consequently, procurement teams in the Americas often prioritize certifications, lead-time reliability, and supplier transparency when selecting resins and compounders.

Europe, the Middle East & Africa present a heterogeneous mix of regulatory rigor and market demand. European players, influenced by strict environmental and chemical regulations, have emphasized halogen-free flame retardants and recyclability criteria in material specifications. Middle Eastern infrastructure projects demand high-durability enclosures and large-scale deployments, while certain African markets prioritize cost-effective, robust solutions that can tolerate challenging environmental conditions. Together, EMEA customers generally require suppliers who can demonstrate compliance, long-term durability, and tailored service models that address local installation and maintenance realities.

Asia-Pacific remains the largest center of both component manufacturing and polymer production capacity, hosting a dense network of resin producers, compounders, and OEMs. This region continues to drive innovation in thin-wall molding, high-flow formulations, and integrated module assembly techniques. Nevertheless, concentration of supply in certain countries also amplifies geopolitical and logistics risks, prompting regional buyers to seek multi-source strategies and localized inventory buffers. Across all regions, there is a clear trend toward aligning material specifications with local regulatory regimes, ensuring that qualification testing replicates in-field conditions unique to each geography, and optimizing logistics to minimize lead-time variability.

Technical leadership, integrated service models, and co-development partnerships are defining competitive differentiation among resin suppliers and component manufacturers

Competitive dynamics among companies operating in the specialty engineering plastics ecosystem are increasingly defined by a combination of technical competence, application-focused collaboration, and supply-chain flexibility. Leading resin manufacturers invest heavily in advanced polymer chemistry and compounding capabilities, offering tailored formulations that address the dielectric, thermal, and flame-retardant needs of 5G components. At the same time, compounders and specialty converters that provide pre-colored, glass- or carbon-filled blends, and proprietary additive packages are differentiating through shorter qualification cycles and co-development programs with OEMs.

Component manufacturers and system integrators differentiate themselves by embedding materials expertise early in the design cycle, leveraging material simulation, and conducting in-house accelerated aging and RF performance testing. Strategic partnerships have become a key competitive lever, with material suppliers and component makers forming collaborative development agreements to optimize part geometry, wall thickness, and compound composition simultaneously. Additionally, companies that offer vertically integrated services-spanning resin supply, compounding, molding, and post-processing-are often able to reduce qualification friction and provide bundled service-level agreements that address both performance and availability.

Intellectual property around flame-retardant chemistries, conductive fillers, and adhesion promoters has also become a commercial moat. Firms that support customers with robust technical documentation, standardized qualification protocols, and regional technical service centers are better positioned to win long-term contracts. Finally, those that can execute rapid scale-up while maintaining tight process controls and testing regimes will increasingly capture share as designs move from prototype to mass production.

Actionable, cross-functional initiatives for engineering, procurement, and leadership to accelerate qualification, diversify sourcing, and safeguard product roadmaps

Industry leaders should prioritize a set of pragmatic, high-impact actions that align materials engineering, procurement, and product roadmaps. First, accelerate material qualification by instituting standardized, cross-functional validation protocols that include RF performance characterization, thermal cycling, and long-duration aging tests representative of in-field conditions. Rapid prototyping and parallel process trials using additive manufacturing techniques can compress timelines and reveal manufacturability constraints before full-scale tooling investment. Second, diversify the supplier base geographically and technically by qualifying at least two upstream sources for critical resin families and by establishing relationships with compounders capable of local blending and finishing. This reduces disruption risk and enhances bargaining leverage.

Third, adopt design-for-material-substitution principles that allow last-mile swaps of polymer grades without requiring full system requalification. Modular component architectures and tolerance-conscious design practices make substitution feasible. Fourth, invest in localized compounding and small-scale injection molding capability where tariff exposure or logistics risk is most acute; these facilities can act as swing capacity during supply disruptions. Fifth, negotiate contract terms that incorporate material substitution clauses, index-linked components for commodity costs, and clear lead-time commitments. Sixth, strengthen collaboration with material suppliers through co-funded development programs that target specific dielectric and thermal performance improvements and create shared IP or exclusivity arrangements for differentiated formulations.

Finally, embed strategic scenario planning into procurement and product teams to stress-test design and sourcing choices against tariff shifts, raw material shortages, and demand surges. By aligning engineering, sourcing, and commercial functions around these recommendations, companies can reduce qualification timelines, control cost exposure, and sustain product performance in a rapidly evolving 5G environment.

Rigorous primary engagement, laboratory benchmarking, and transparent triangulation protocols form the foundation of the study's methodology and ensure reproducible insights

The research underpinning this analysis combines structured primary engagement with domain experts, targeted technical benchmarking, and systematic secondary synthesis to produce a robust, reproducible set of insights. Primary inputs were gathered through interviews with materials scientists, component engineers, procurement leaders, and testing laboratory managers who have direct experience with polymer selection, qualification timelines, and production constraints in 5G contexts. These conversations focused on real-world trade-offs related to dielectric performance, thermal management, manufacturability, and supplier reliability. In parallel, lab-level benchmarking was conducted to compare key material properties across representative resin families using standardized test protocols for dielectric constant, dissipation factor, thermal conductivity, and mechanical stability under thermal cycling.

Secondary analysis included a comprehensive review of technical standards, regulatory updates, and publicly available product specifications to triangulate claims made by suppliers and to map typical qualification pathways across applications. Data synthesis employed a triangulation approach where primary interview insights were validated against lab benchmarking and secondary documentation. Scenario analysis was used to explore the operational implications of tariff shifts, supplier disruptions, and emergent material technologies. Throughout the process, emphasis was placed on transparency: methodologies, test conditions, and assumptions were documented to enable reproducibility and to support client-specific adaptation of the findings. Ethical considerations and confidentiality protections were applied to proprietary inputs received from industry participants.

Synthesis of material performance imperatives and supply chain resilience that will determine who captures the strategic advantages in 5G product ecosystems

The convergence of higher-frequency radio technologies, denser integration of RF front-ends, and evolving regulatory constraints has elevated specialty engineering plastics from commodity inputs to strategic enablers of 5G performance. Technical selection now requires a simultaneous focus on dielectric properties, thermal management, mechanical integrity, and regulatory compliance. At the same time, supply chain and policy shifts have reshaped vendor strategies and forced organizations to incorporate supplier resilience into material decisions. Consequently, successful product development will increasingly depend on integrated workflows that bring materials engineering, process development, and strategic sourcing into a single, iterative loop.

Looking ahead, companies that invest in co-development with material suppliers, adopt modular design principles, and operationalize flexible sourcing will be best positioned to meet the twin pressures of performance and reliability. Additionally, the ability to validate alternative grades rapidly and to scale localized compounding or molding will serve as a competitive hedge against geopolitical and tariff-driven disruptions. In essence, the story of specialty engineering plastics in the 5G era is one of technical refinement intertwined with supply chain redesign, and the organizations that treat materials strategy as a core element of product and commercial planning will gain disproportionate advantage.

Product Code: MRR-C36616F698D3

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Special Engineering Plastics for 5G Market, by Resin Type

  • 8.1. Peek
    • 8.1.1. Carbon Filled
    • 8.1.2. Glass Filled
    • 8.1.3. Unfilled
  • 8.2. PEI
    • 8.2.1. Flame Retardant
    • 8.2.2. High Flow
    • 8.2.3. Standard
  • 8.3. PES
    • 8.3.1. General Purpose
    • 8.3.2. Reinforced
  • 8.4. PPS
    • 8.4.1. Glass Filled
    • 8.4.2. Unfilled
  • 8.5. PSU
    • 8.5.1. General Purpose
    • 8.5.2. Reinforced

9. Special Engineering Plastics for 5G Market, by Process

  • 9.1. 3D Printing
    • 9.1.1. FDM
    • 9.1.2. SLS
  • 9.2. Blow Molding
    • 9.2.1. Extrusion Blow Molding
    • 9.2.2. Injection Blow Molding
  • 9.3. Compression Molding
    • 9.3.1. Reaction Injection Molding
    • 9.3.2. Transfer Molding
  • 9.4. Extrusion
    • 9.4.1. Profile Extrusion
    • 9.4.2. Sheet Extrusion
  • 9.5. Injection Molding
    • 9.5.1. Multi Shot Molding
    • 9.5.2. Two Shot Molding

10. Special Engineering Plastics for 5G Market, by Application

  • 10.1. Antenna Housings
    • 10.1.1. Base Station Housing
    • 10.1.2. Smartphone Housing
  • 10.2. Connectors
    • 10.2.1. Optical Connectors
    • 10.2.2. Rf Connectors
  • 10.3. Filters
    • 10.3.1. Bandpass Filters
    • 10.3.2. High Pass Filters
    • 10.3.3. Low Pass Filters
  • 10.4. Modules
    • 10.4.1. Power Modules
    • 10.4.2. Rf Modules
  • 10.5. Switches
    • 10.5.1. Optical Switches
    • 10.5.2. Rf Switches

11. Special Engineering Plastics for 5G Market, by End Use Industry

  • 11.1. Automotive
    • 11.1.1. Autonomous Driving Sensors
    • 11.1.2. Ev Communication Modules
  • 11.2. Consumer Devices
    • 11.2.1. Smartphones
    • 11.2.2. Tablets
  • 11.3. Defense & Aerospace
    • 11.3.1. Military Radar
    • 11.3.2. Satellites
  • 11.4. Telecom Infrastructure
    • 11.4.1. Oems
    • 11.4.2. Operators

12. Special Engineering Plastics for 5G Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Special Engineering Plastics for 5G Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Special Engineering Plastics for 5G Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Special Engineering Plastics for 5G Market

16. China Special Engineering Plastics for 5G Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Arkema S.A.
  • 17.6. Asahi Kasei Corporation
  • 17.7. Ascend Performance Materials
  • 17.8. Avient Corporation
  • 17.9. BASF SE
  • 17.10. Celanese Corporation
  • 17.11. Chi Mei Corporation
  • 17.12. Covestro AG
  • 17.13. Dow Inc.
  • 17.14. DuPont de Nemours, Inc.
  • 17.15. Eastman Chemical Company
  • 17.16. EMS-Chemie Holding AG
  • 17.17. Ensinger GmbH
  • 17.18. Evonik Industries AG
  • 17.19. Formosa Plastics Corporation
  • 17.20. Kaneka Corporation
  • 17.21. Kingfa Science & Technology (India) Ltd
  • 17.22. Kureha Corporation
  • 17.23. LANXESS AG
  • 17.24. LG Chem Ltd.
  • 17.25. Mitsubishi Chemical Holdings Corporation
  • 17.26. Polyplastics Co., Ltd.
  • 17.27. Saudi Basic Industries Corporation
  • 17.28. Solvay S.A.
  • 17.29. Teijin Limited
  • 17.30. Toray Industries, Inc.
Product Code: MRR-C36616F698D3

LIST OF FIGURES

  • FIGURE 1. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 2. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SHARE, BY KEY PLAYER, 2025
  • FIGURE 3. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET, FPNV POSITIONING MATRIX, 2025
  • FIGURE 4. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RESIN TYPE, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 5. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROCESS, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 6. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY APPLICATION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 7. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY END USE INDUSTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 8. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REGION, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 9. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GROUP, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 10. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COUNTRY, 2025 VS 2026 VS 2032 (USD MILLION)
  • FIGURE 11. UNITED STATES SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, 2018-2032 (USD MILLION)
  • FIGURE 12. CHINA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, 2018-2032 (USD MILLION)

LIST OF TABLES

  • TABLE 1. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, 2018-2032 (USD MILLION)
  • TABLE 2. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RESIN TYPE, 2018-2032 (USD MILLION)
  • TABLE 3. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 4. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 5. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 6. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, 2018-2032 (USD MILLION)
  • TABLE 7. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CARBON FILLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 8. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CARBON FILLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 9. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CARBON FILLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 10. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GLASS FILLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 11. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GLASS FILLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 12. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GLASS FILLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 13. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY UNFILLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 14. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY UNFILLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 15. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY UNFILLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 16. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 17. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 18. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 19. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, 2018-2032 (USD MILLION)
  • TABLE 20. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FLAME RETARDANT, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 21. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FLAME RETARDANT, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 22. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FLAME RETARDANT, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 23. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY HIGH FLOW, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 24. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY HIGH FLOW, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 25. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY HIGH FLOW, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 26. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY STANDARD, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 27. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY STANDARD, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 28. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY STANDARD, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 29. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 30. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 31. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 32. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, 2018-2032 (USD MILLION)
  • TABLE 33. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GENERAL PURPOSE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 34. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GENERAL PURPOSE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 35. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GENERAL PURPOSE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 36. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REINFORCED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 37. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REINFORCED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 38. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REINFORCED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 39. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 40. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 41. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 42. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, 2018-2032 (USD MILLION)
  • TABLE 43. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GLASS FILLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 44. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GLASS FILLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 45. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GLASS FILLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 46. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY UNFILLED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 47. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY UNFILLED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 48. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY UNFILLED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 49. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 50. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 51. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 52. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, 2018-2032 (USD MILLION)
  • TABLE 53. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GENERAL PURPOSE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 54. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GENERAL PURPOSE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 55. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY GENERAL PURPOSE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 56. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REINFORCED, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 57. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REINFORCED, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 58. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REINFORCED, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 59. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROCESS, 2018-2032 (USD MILLION)
  • TABLE 60. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 61. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 62. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 63. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, 2018-2032 (USD MILLION)
  • TABLE 64. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FDM, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 65. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FDM, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 66. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FDM, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 67. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SLS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 68. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SLS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 69. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SLS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 70. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 71. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 72. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 73. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, 2018-2032 (USD MILLION)
  • TABLE 74. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION BLOW MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 75. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION BLOW MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 76. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION BLOW MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 77. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION BLOW MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 78. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION BLOW MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 79. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION BLOW MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 80. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 81. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 82. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 83. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 84. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REACTION INJECTION MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 85. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REACTION INJECTION MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 86. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REACTION INJECTION MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 87. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TRANSFER MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 88. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TRANSFER MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 89. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TRANSFER MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 90. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 91. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 92. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 93. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, 2018-2032 (USD MILLION)
  • TABLE 94. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROFILE EXTRUSION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 95. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROFILE EXTRUSION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 96. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROFILE EXTRUSION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 97. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SHEET EXTRUSION, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 98. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SHEET EXTRUSION, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 99. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SHEET EXTRUSION, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 100. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 101. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 102. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 103. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 104. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MULTI SHOT MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 105. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MULTI SHOT MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 106. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MULTI SHOT MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 107. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TWO SHOT MOLDING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 108. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TWO SHOT MOLDING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 109. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TWO SHOT MOLDING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 110. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 111. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 112. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 113. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 114. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, 2018-2032 (USD MILLION)
  • TABLE 115. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BASE STATION HOUSING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 116. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BASE STATION HOUSING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 117. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BASE STATION HOUSING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 118. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SMARTPHONE HOUSING, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 119. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SMARTPHONE HOUSING, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 120. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SMARTPHONE HOUSING, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 121. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 122. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 123. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 124. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, 2018-2032 (USD MILLION)
  • TABLE 125. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPTICAL CONNECTORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 126. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPTICAL CONNECTORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 127. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPTICAL CONNECTORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 128. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF CONNECTORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 129. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF CONNECTORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 130. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF CONNECTORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 131. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 132. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 133. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 134. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, 2018-2032 (USD MILLION)
  • TABLE 135. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BANDPASS FILTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 136. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BANDPASS FILTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 137. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BANDPASS FILTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 138. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY HIGH PASS FILTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 139. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY HIGH PASS FILTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 140. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY HIGH PASS FILTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 141. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY LOW PASS FILTERS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 142. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY LOW PASS FILTERS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 143. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY LOW PASS FILTERS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 144. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 145. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 146. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 147. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, 2018-2032 (USD MILLION)
  • TABLE 148. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY POWER MODULES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 149. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY POWER MODULES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 150. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY POWER MODULES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 151. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF MODULES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 152. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF MODULES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 153. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF MODULES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 154. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 155. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 156. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 157. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, 2018-2032 (USD MILLION)
  • TABLE 158. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPTICAL SWITCHES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 159. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPTICAL SWITCHES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 160. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPTICAL SWITCHES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 161. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF SWITCHES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 162. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF SWITCHES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 163. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RF SWITCHES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 164. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 165. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 166. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 167. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 168. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 169. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTONOMOUS DRIVING SENSORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 170. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTONOMOUS DRIVING SENSORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 171. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTONOMOUS DRIVING SENSORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 172. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EV COMMUNICATION MODULES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 173. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EV COMMUNICATION MODULES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 174. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EV COMMUNICATION MODULES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 175. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 176. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 177. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 178. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, 2018-2032 (USD MILLION)
  • TABLE 179. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SMARTPHONES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 180. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SMARTPHONES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 181. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SMARTPHONES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 182. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TABLETS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 183. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TABLETS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 184. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TABLETS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 185. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 186. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 187. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 188. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, 2018-2032 (USD MILLION)
  • TABLE 189. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MILITARY RADAR, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 190. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MILITARY RADAR, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 191. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MILITARY RADAR, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 192. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SATELLITES, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 193. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SATELLITES, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 194. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SATELLITES, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 195. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 196. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 197. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 198. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, 2018-2032 (USD MILLION)
  • TABLE 199. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OEMS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 200. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OEMS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 201. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OEMS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 202. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPERATORS, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 203. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPERATORS, BY GROUP, 2018-2032 (USD MILLION)
  • TABLE 204. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY OPERATORS, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 205. GLOBAL SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY REGION, 2018-2032 (USD MILLION)
  • TABLE 206. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 207. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RESIN TYPE, 2018-2032 (USD MILLION)
  • TABLE 208. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, 2018-2032 (USD MILLION)
  • TABLE 209. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, 2018-2032 (USD MILLION)
  • TABLE 210. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, 2018-2032 (USD MILLION)
  • TABLE 211. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, 2018-2032 (USD MILLION)
  • TABLE 212. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, 2018-2032 (USD MILLION)
  • TABLE 213. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROCESS, 2018-2032 (USD MILLION)
  • TABLE 214. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, 2018-2032 (USD MILLION)
  • TABLE 215. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, 2018-2032 (USD MILLION)
  • TABLE 216. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 217. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, 2018-2032 (USD MILLION)
  • TABLE 218. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 219. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 220. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, 2018-2032 (USD MILLION)
  • TABLE 221. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, 2018-2032 (USD MILLION)
  • TABLE 222. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, 2018-2032 (USD MILLION)
  • TABLE 223. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, 2018-2032 (USD MILLION)
  • TABLE 224. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, 2018-2032 (USD MILLION)
  • TABLE 225. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 226. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 227. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, 2018-2032 (USD MILLION)
  • TABLE 228. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, 2018-2032 (USD MILLION)
  • TABLE 229. AMERICAS SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, 2018-2032 (USD MILLION)
  • TABLE 230. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 231. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RESIN TYPE, 2018-2032 (USD MILLION)
  • TABLE 232. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, 2018-2032 (USD MILLION)
  • TABLE 233. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, 2018-2032 (USD MILLION)
  • TABLE 234. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, 2018-2032 (USD MILLION)
  • TABLE 235. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, 2018-2032 (USD MILLION)
  • TABLE 236. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, 2018-2032 (USD MILLION)
  • TABLE 237. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROCESS, 2018-2032 (USD MILLION)
  • TABLE 238. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, 2018-2032 (USD MILLION)
  • TABLE 239. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, 2018-2032 (USD MILLION)
  • TABLE 240. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 241. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, 2018-2032 (USD MILLION)
  • TABLE 242. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 243. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 244. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, 2018-2032 (USD MILLION)
  • TABLE 245. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, 2018-2032 (USD MILLION)
  • TABLE 246. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, 2018-2032 (USD MILLION)
  • TABLE 247. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, 2018-2032 (USD MILLION)
  • TABLE 248. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, 2018-2032 (USD MILLION)
  • TABLE 249. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 250. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 251. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, 2018-2032 (USD MILLION)
  • TABLE 252. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, 2018-2032 (USD MILLION)
  • TABLE 253. NORTH AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, 2018-2032 (USD MILLION)
  • TABLE 254. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COUNTRY, 2018-2032 (USD MILLION)
  • TABLE 255. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RESIN TYPE, 2018-2032 (USD MILLION)
  • TABLE 256. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, 2018-2032 (USD MILLION)
  • TABLE 257. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, 2018-2032 (USD MILLION)
  • TABLE 258. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, 2018-2032 (USD MILLION)
  • TABLE 259. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PPS, 2018-2032 (USD MILLION)
  • TABLE 260. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PSU, 2018-2032 (USD MILLION)
  • TABLE 261. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PROCESS, 2018-2032 (USD MILLION)
  • TABLE 262. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY 3D PRINTING, 2018-2032 (USD MILLION)
  • TABLE 263. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY BLOW MOLDING, 2018-2032 (USD MILLION)
  • TABLE 264. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY COMPRESSION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 265. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY EXTRUSION, 2018-2032 (USD MILLION)
  • TABLE 266. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY INJECTION MOLDING, 2018-2032 (USD MILLION)
  • TABLE 267. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY APPLICATION, 2018-2032 (USD MILLION)
  • TABLE 268. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY ANTENNA HOUSINGS, 2018-2032 (USD MILLION)
  • TABLE 269. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONNECTORS, 2018-2032 (USD MILLION)
  • TABLE 270. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY FILTERS, 2018-2032 (USD MILLION)
  • TABLE 271. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY MODULES, 2018-2032 (USD MILLION)
  • TABLE 272. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SWITCHES, 2018-2032 (USD MILLION)
  • TABLE 273. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY END USE INDUSTRY, 2018-2032 (USD MILLION)
  • TABLE 274. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY AUTOMOTIVE, 2018-2032 (USD MILLION)
  • TABLE 275. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY CONSUMER DEVICES, 2018-2032 (USD MILLION)
  • TABLE 276. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY DEFENSE & AEROSPACE, 2018-2032 (USD MILLION)
  • TABLE 277. LATIN AMERICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY TELECOM INFRASTRUCTURE, 2018-2032 (USD MILLION)
  • TABLE 278. EUROPE, MIDDLE EAST & AFRICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY SUBREGION, 2018-2032 (USD MILLION)
  • TABLE 279. EUROPE, MIDDLE EAST & AFRICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY RESIN TYPE, 2018-2032 (USD MILLION)
  • TABLE 280. EUROPE, MIDDLE EAST & AFRICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEEK, 2018-2032 (USD MILLION)
  • TABLE 281. EUROPE, MIDDLE EAST & AFRICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PEI, 2018-2032 (USD MILLION)
  • TABLE 282. EUROPE, MIDDLE EAST & AFRICA SPECIAL ENGINEERING PLASTICS FOR 5G MARKET SIZE, BY PES, 2018-2032 (USD MILLION)

TABLE 2

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!