Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: KuicK Research | PRODUCT CODE: 1539241

Cover Image

PUBLISHER: KuicK Research | PRODUCT CODE: 1539241

MCL1 Inhibitor Drug Clinical Trials & Commercialization Opportunity Insights 2024

PUBLISHED:
PAGES: 60 Pages
DELIVERY TIME: 1-2 business days
SELECT AN OPTION
PDF (Single User License)
USD 2400
PDF (Multi-User License)
USD 4000

Add to Cart

MCL1 Inhibitor Drug Clinical Trials & Commercialization Opportunity Insights 2024 Report Highlights:

  • Research Methodology
  • ML1 Inhibitor Drug In Clinical Trials: > 10 Drugs
  • MCL1 Inhibitor Drug Clinical Trials Insight By Company, Indication and Phase
  • Global MCL1 Inhibitor Drug Market Opportunity Outlook
  • Role of MCL1 & Clinical Innovation by Indications
  • Competitive Landscape

MCL1 inhibitors represent a promising yet challenging frontier in cancer therapeutics, with significant potential as an emerging opportunity for drug development. Despite the absence of approved MCL1 inhibitors and the highest stage of development being phase 2 clinical trials, the MCL1 inhibitors continues to attract substantial interest from pharmaceutical companies and researchers alike. This interest is driven by the critical role MCL1 plays in cancer cell survival and its potential as a target for overcoming resistance to existing therapies.

MCL1 (myeloid cell leukemia 1) is a critical anti-apoptotic protein belonging to the B-cell leukemia/lymphoma-2 (BCL-2) protein family. It has emerged as an attractive target for cancer therapy due to its pivotal role in promoting cell survival and resistance to apoptosis in various cancer types. MCL1 is frequently overexpressed in hematologic malignancies and solid tumors, contributing to cancer cell survival proliferation, and resistance to conventional therapies. This widespread involvement in cancer biology underscores the potential of MCL1 inhibition as a therapeutic strategy with broad applications across multiple cancer indications.

The development of small molecule inhibitors specifically targeting MCL1 has been a primary focus in this field. These efforts aim to disrupt the protein-protein interactions between MCL1 and its pro-apoptotic binding partners, thereby triggering cancer cell death. Several pharmaceutical companies and academic institutions are actively engaged in developing and optimizing small molecule MCL1 inhibitors with improved potency, selectivity and pharmacokinetic properties.

While direct MCL1 inhibitors are under development, alternative approaches to targeting MCL1 have also gained traction. One such strategy involves the use of cyclin-dependent kinase (CDK) inhibitors, particularly CDK9 or CDK7, which indirectly suppresses MCL1 expression by interfering with its transcription. This approach leverages the short half-life of MCL1 protein, rapidly depleting cellular MCL1 levels and potentially overcoming some of the challenges associated with direct inhibition. An example of this is Cyclacel Pharmaceuticals' Seliciclib, a CDK inhibitor, which also lowers the levels of MCL1 in the cell.

Another avenue being explored is the use of BCL-2 inhibitors that demonstrate activity against MCL1. This primarily involves the development of inhibitors targeting the BH3 binding domain, which is found on both BCL-2 and MCL1. While these compounds may lack the selectivity of dedicated MCL1 inhibitors, they offer the potential advantage of simultaneously targeting multiple anti-apoptotic proteins, potentially leading to more robust anti-cancer effects.

The market opportunity for MCL1 inhibitor development is substantial, driven by several factors. The large potential market, spanning numerous cancer types where MCL1 overexpression is observed, presents a significant patient population across multiple indications. There is also a clear unmet medical need, as many cancers develop resistance to existing therapies, creating a demand for novel treatment options that can overcome these resistance mechanisms.

MCL1 inhibitors show promise in combination with other targeted therapies, chemotherapies, and immunotherapies, expanding their potential applications and market value. The first-to-market advantage is particularly compelling, as the first successful compound to reach the market could capture significant market share and establish a strong position in the field. Additionally, novel MCL1 inhibitors and innovative approaches to MCL1 targeting present opportunities for robust patent protection and exclusivity.

Additionally, emerging research suggests potential applications for MCL1 inhibitors beyond oncology, such as in antiviral treatments, potentially broadening the market scope. This expansion into other therapeutic areas could significant increase the commercial potential of MCL1 inhibitors.

In conclusion, while the development of MCL1 inhibitors faces challenges, including potential off-target toxicities and the need for careful patient selection, the market opportunity remains compelling. The combination of a large potential market, significant unmet medical need, and the possibility of first-mover advantage makes MCL1 inhibition an attractive area for pharmaceutical investment and innovation in the coming years.

Table of Contents

1. Research Methodology

2. Introduction To MCL1 Inhibitors

  • 2.1 MCL1 As A Therapeutic Target
  • 2.2 Role of MCL1 in Cancer

3. MCL1 Inhibitors - Mechanism of Action

  • 3.1 Indirect Inhibition of MCL1
  • 3.2 Direct Inhibition of MCL1

4. Role of MCL1 & Clinical Innovation by Indication

  • 4.1 Hematological Malignancies
    • 4.1.1 Leukemia
    • 4.1.2 Lymphoma
    • 4.1.3 Multiple Myeloma
  • 4.2 Solid Cancers
    • 4.2.1 Breast cancer
    • 4.2.2 Lung Cancer
    • 4.2.3 Melanoma
    • 4.2.4 Colorectal cancer
  • 4.3 Viral Infections

5. Global MCL1 Inhibitor Drug Market Opportunity Outlook

  • 5.1 Current Clinical Research Landscape
  • 5.2 Future Commercialization Opportunities

6. Global MCL1 Inhibitor Drugs Clinical Trials Overview

  • 6.1 By Company
  • 6.2 By Country
  • 6.3 By Indication
  • 6.4 By Patient Segment
  • 6.5 By Phase

7. MCL1 Inhibitors Clinical Trials Insight By Company, Country, Indication & Phase

  • 7.1 Preclinical
  • 7.2 Phase I
  • 7.3 Phase I/II
  • 7.4 Phase II

8. Competitive Landscape

  • 8.1 Abbvie
  • 8.2 Amgen
  • 8.3 Anji Pharma
  • 8.4 Ascentage Pharma
  • 8.5 Broad Institute
  • 8.6 Cyclacel Pharmaceuticals
  • 8.7 Gilead Sciences
  • 8.8 Novartis
  • 8.9 Servier
  • 8.10 Sirnaomics

List of Figures

  • Figure 4-1: MIK665 Phase I Study (NCT04702425) - Initiation & Completion Year
  • Figure 4-2: AZD5991 Phase I/II Study (NCT03013998) - Initiation & Completion Year
  • Figure 4-3: GFH009 Phase I/II Study (NCT04588922) - Initiation & Completion Year
  • Figure 6-1: Global - MCL1 Inhibitor Drugs Trials By Company (Numbers), 2024
  • Figure 6-2: Global - MCL1 Inhibitor Drugs Trials By Country (Numbers), 2024
  • Figure 6-3: Global - MCL1 Inhibitor Drugs Trials By Indication (Numbers), 2024
  • Figure 6-4: Global - MCL1 Inhibitor Drugs Trials by Patient Segment (Numbers), 2024
  • Figure 6-5: Global - MCL1 Inhibitor Drugs Trials By Phase (Numbers), 2024
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!