Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Mordor Intelligence | PRODUCT CODE: 1139282

Cover Image

PUBLISHER: Mordor Intelligence | PRODUCT CODE: 1139282

Active Dosimeter Market - Growth, Trends, and Forecasts (2022 - 2027)

PUBLISHED:
PAGES: 120 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4750
PDF (Team License: Up to 7 Users)
USD 5250
PDF (Site License)
USD 6500
PDF (Corporate License)
USD 8750

Add to Cart

The Active Dosimeter Market is expected to register a CAGR of 6.8% over the forecast period, 2022-2027. Personal protection from ionizing radiation has become crucial for anyone working in an environment with a risk of exposure. It has also become a legislative requirement of an organization to protect its employees from receiving too high a radiation dose. Such working environments may include hospitals, imaging clinics, laboratories, industrial facilities, and some mines (i.e., mineral sand mines). Individuals working in nuclear power plants, nuclear research facilities, and medical laboratories must monitor their exposure to harmful radiation. Hence, they are the primary users of the electronic personal dosimeter.

Key Highlights

  • The working environments that require dosimeters may include hospitals, imaging clinics, laboratories, industrial facilities, and some mines (i.e., mineral sand mines). Individuals working in nuclear power plants, nuclear research facilities, and medical laboratories must continually monitor their exposure to harmful radiation. AcOSHA'sg to OSHA's Ionizing Radiation standard, employers must conduct dose monitoring whenever a worker enters a restricted area and receives, or is likely to receive, a dose that exceeds 25% of the applicable occupational limit (5% for workers under the age of 18) in any calendar quarter. Hence, they are the primary users of the electronic personal dosimeter.
  • The market studied is growing substantially, primarily due to the rise in demand for these devices. The increasing awareness regarding harmful radiation and its ill effects is expected to market the market's growth.
  • However, the market growth is restrained by the high cost of the device. Further, the different readings because of electromagnetic fields might impact the device's accountability, which may be a setback for the market. The device is sensitive to mechanical instability, leading to an inaccurate or false reading. This is hampering the growth of the active dosimeters market.
  • The COVID-19 pandemic led to enormous disruptions in supply chains across industries globally, due to which many businesses worldwide halted or reduced operations to help combat the spread of the virus. The pandemic impacted the passive electronic components market, leading to decreased operation levels across the component production and raw material production levels across the supply chain. This represents a fall in sales in many regions and countries.

Key Market Trends

Medical Application is Expected to Hold Significant Share

  • In medical radiation dosimetry, the amount and type of ionizing radiation that is exposed to and attenuated by the human body are measured, computed, and evaluated. Radiation dosimeters are used to measure radiation in a variety of solid, gas, and liquid states; these are primarily classified as ionization chamber, semiconductor, and diamond detector types. These detectors track radiation administered both externally during external beam radiation therapy and internally through ingestion or inhalation of radioactive substances.
  • One of the professions with the greatest occupational doses is the medical staff involved in interventional treatments. APDs, or active personal dosemeters, may greatly enhance exposure during interventional treatments. However, employing APDs during interventional operations can provide a number of issues. This is caused by the radiation's particular energy and angular distribution as well as its pulsed character. The type of interventional treatment, working methods and personal habits, protective equipment employed, and features of the X-ray field are just a few of the factors that affect occupational exposure and the radiation spread around the patient.
  • Silicon diodes are the detector of choice for most active dosimeters, but frequently their calibration is neglected since the radiation beam characteristics in which they are calibrated and those in which they are employed are very different. The survey uncovered issues with active dosimeter use, such as its dependability in hospitals' common pulsed x-ray fields. The situation would probably improve with guidance from regulatory bodies and professional groups on the testing and calibration of these devices used in hospitals.
  • Since radiography is essential for diagnosing COVID-19 cases and determining prognosis, nearly all suspected patients in clinical practice must have diagnostic evaluation, with many commonly undergoing repeated CT exams in a short period of time. Hospitals in Wuhan have several pieces of CT equipment installed, and radiographers from all across China have flocked there to provide a hand. Only after receiving radiation protection training and donning personal dosimeters for monitoring external radiation exposure can radiation personnel report to their posts.

North America is Expected to Hold Significant Share

  • The North American region is expected to account for a significant share of the active dosimeter market due to its rising demand across multiple end users, such as healthcare, industrial, and defense.
  • The regulatory standards in the region regarding dosimeters are aiding the market for active dosimeters. Currently, the US Department of Labor Occupational Safety and Health Administration (OSHA) regulatory practices specify the application of dosimeters with A-weighting, 5 dB exchange rate, and SLOW exponential time averaging.
  • Furthermore, the increasing dependency on nuclear plants for energy resulted in the active construction of new plants, increasing the number of employees working at nuclear plants. With the high risk of radiation at the nuclear plants, the need for understanding the radiation exposure by all the workers has become necessary, thereby driving the growth of the market studied.
  • As a part of the country's policy, the United States is increasing its expenditure on the healthcare industry, which is anticipated to reach as high as 20% of the GDP by 2025, further increasing the demand for active dosimeter equipment across radiology and cardiology departments, thereby driving the market growth during the forecast period.
  • Further more, Owing to the increasing demand for dosimeters to tap into a broader customer base and technological ecosystem, the region is witnessing several innovations, collaborations, and acquisitions by prominent companies. In November 2021, Mirion Technologies Inc., a global provider of detection, measurement, analysis, and monitoring solutions to the medical, nuclear, defense, and research industries, acquired CHP Dosimetry, a dosimetry services distributor based in the United States. CHP Dosimetry is a current Mirion customer, with CHP Dosimetry providing customers with access to many Mirion-branded products, including the Instadose dosimetry monitoring platform, which is Mirion's hallmark innovation.

Competitive Landscape

The Active Dosimeter Market is moderately competitive and consists of major players such as Landauer Inc., Mirion Technologies Inc., Thermo Fisher Scientific Inc., Fuji Electric Co. Ltd., Polimaster Inc., etc. However, with advancements in the assessment and measurement of the electronic component, new players are increasing their market presence, and prominent players are adopting acquisition strategies to expand their companies.

  • July 2022 - Mirion Technologies has announced the launch of the Mirion medical brand comprised of the organization's healthcare-focused Dosimetry Services, Sun Nuclear, CIRS, Biodex, and Capintec business units. Furthermore, the establishment of the Mirion Medical group reinforces the Mirion commitment to leveraging its expertise in ionizing radiation for healthcare applications.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support
Product Code: 71674

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Consumers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Intensity of Competitive Rivalry
    • 4.2.5 Threat of Substitute Products
  • 4.3 Assessment of Impact of COVID-19 on the market

5 MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Increasing Construction of Nuclear Reactors
    • 5.1.2 Growing Application Across Medical & Lifescience Sector
  • 5.2 Market Restraints
    • 5.2.1 High cost of device
    • 5.2.2 Sensitivity toward Mechanical Instability

6 MARKET SEGMENTATION

  • 6.1 By Application
    • 6.1.1 Medical
    • 6.1.2 Industrial (Oil & Gas, Mining)
    • 6.1.3 Military and Homeland Security
    • 6.1.4 Power & Energy
    • 6.1.5 Other Applications
  • 6.2 By Geography
    • 6.2.1 North America
    • 6.2.2 Europe
    • 6.2.3 Asia Pacific
    • 6.2.4 Rest of the World

7 COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles
    • 7.1.1 Landauer Inc.
    • 7.1.2 Polimaster Inc.
    • 7.1.3 Mirion Technologies Inc.
    • 7.1.4 Thermo Fisher Scientific Inc.
    • 7.1.5 Fuji Electric Co. Ltd.
    • 7.1.6 ATOMTEX SPE
    • 7.1.7 Tracerco Limited
    • 7.1.8 Unfors RaySafe AB
    • 7.1.9 Far West Technology Inc.
    • 7.1.10 Rotunda Scientific Technologies LLC
    • 7.1.11 Raeco Rents, LLC.

8 INVESTMENT ANALYSIS

9 FUTURE OF THE MARKET

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!