Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Persistence Market Research | PRODUCT CODE: 1446701

Cover Image

PUBLISHER: Persistence Market Research | PRODUCT CODE: 1446701

Cell Lysis and Disruption Market by Product Type, End-Users, and Geography (North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa): Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 2023-2030

PUBLISHED:
PAGES: 200 Pages
DELIVERY TIME: 2-5 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4900
PDF (Multi User License)
USD 7600
PDF (Corporate User License)
USD 10600

Add to Cart

Persistence Market Research has recently released a comprehensive report on the worldwide market for cell lysis and disruption. The report offers a thorough assessment of crucial market dynamics, including drivers, trends, opportunities, and challenges, providing detailed insights into the market structure. This research publication presents exclusive data and statistics outlining the anticipated growth trajectory of the global cell lysis and disruption market from 2023 to 2033.

The global cell lysis and disruption market is forecasted to expand at a CAGR of 9.2% and thereby increase from a value of US$ 4.4 Bn in 2023 to US$ 8.2 Bn by the end of 2030.

Key Insights

Cell Lysis and Disruption Market Size (2023E): US$4.4 Billion

Projected Market Value (2030F): US$8.2 Billion

Global Market Growth Rate (CAGR 2023 to 2030): 9.2%

Historical Market Growth Rate (CAGR 2018 to 2022): 7.7%

Cell Lysis and Disruption Market - Report Scope:

The Cell Lysis and Disruption Market is poised for significant growth, driven by advancements in cell-based research, biotechnology, and pharmaceutical industries. This market serves research laboratories, bioprocessing facilities, and diagnostic laboratories, offering a range of products for efficient cell lysis and disruption processes. Market growth is fueled by the increasing demand for cellular components, proteins, and nucleic acids for research and therapeutic applications.

Market Growth Drivers:

The global Cell Lysis and Disruption Market is influenced by several key factors, including the growing focus on genomics and proteomics research, advancements in biopharmaceutical production, and the increasing prevalence of chronic diseases. Cell lysis and disruption techniques play a crucial role in extracting cellular components for various applications, such as drug discovery, diagnostics, and vaccine development. Technological innovations, including bead mill homogenization and ultrasonic cell disruption, contribute to market expansion. Additionally, the expansion of personalized medicine and the rise in demand for biologics drive market growth.

Market Restraints:

Despite promising growth prospects, the Cell Lysis and Disruption Market faces challenges related to the high cost of advanced lysis and disruption equipment, variability in sample types, and the need for standardized protocols. Variability in cell membrane properties and the risk of degradation of sensitive biomolecules during lysis pose challenges for researchers. Stricter regulations governing the use of certain cell lysis methods and concerns about reproducibility hinder market penetration. Addressing these challenges requires collaboration between industry stakeholders, researchers, and regulatory bodies to establish best practices and ensure the reliability of cell lysis and disruption techniques.

Market Opportunities:

The Cell Lysis and Disruption Market presents significant growth opportunities driven by ongoing research, technological innovations, and the increasing demand for biopharmaceuticals and personalized medicine. Integration of artificial intelligence in cell lysis optimization, development of scalable and automated lysis systems, and the customization of products for specific sample types open new frontiers in this market. Strategic partnerships with research institutions, biopharmaceutical companies, and diagnostic laboratories expand market reach and facilitate technology adoption. Continued investment in research and development, coupled with educational initiatives, contributes to market growth and enhances the efficiency of cell lysis and disruption processes.

Key Questions Answered in the Report:

  • What is the Forecast CAGR of the Cell Lysis and Disruption Market?
  • What is the Market Size of the Market in the Year 2023?
  • Which Country Held the Largest Market Share in 2023?
  • What are the Key Players in The Cell Lysis and Disruption Market?
  • Which is the Fastest-Growing Segment in the Application Segment?

Competitive Intelligence and Business Strategy:

Leading players in the global Cell Lysis and Disruption Market, including [Insert Key Companies], focus on innovation, product differentiation, and strategic collaborations to gain a competitive edge. These companies invest in R&D to develop advanced lysis and disruption technologies, incorporating features such as high-throughput capabilities and minimal sample loss. Collaborations with research institutions, bioprocessing facilities, and regulatory agencies facilitate market access and promote technology adoption. Moreover, emphasis on customer training, technical support, and ensuring compliance with quality standards fosters market growth and enhances customer satisfaction in the rapidly evolving field of cell lysis and disruption.

Key Companies Profiled:

  • Thermo Fisher Scientific, Inc.
  • Merck KGaA
  • Bio-Rad Laboratories, Inc.
  • F. Hoffmann-La Roche Ltd.
  • QIAGEN
  • Danaher
  • Miltenyi Biotec
  • Claremont BioSolutions, LLC
  • IDEX
  • Parr Instrument Company
  • Covaris, LLC
  • Cell Signaling Technology, Inc.
  • Qsonica

Cell Lysis and Disruption Market Research Segmentation:

The reagent-based segment is set to dominate the cell lysis and disruption market, crucial in various applications like biopharmaceutical production and diagnostics. Ultrasonic homogenization methods are expected to see rapid growth due to the demand for quick and effective cell lysis, particularly in research environments.

Reagents and consumables are anticipated to lead in product sales, given their indispensable role in diverse cell lysis techniques. Simultaneously, the instruments sector is expected to expand rapidly, driven by the adoption of automated and high-throughput technologies.

Mammalian cells are predicted to occupy the largest market share, driven by their extensive use in biopharmaceutical manufacturing, while the yeast/algae/fungi segment is expected to experience rapid growth. Nucleic acid isolation is foreseen to generate the most value in the market, with the cell organelle isolation sector witnessing rapid expansion.

North America is poised to dominate the global market, benefiting from a technologically advanced biopharmaceutical sector and robust research and development framework. In East Asia, particularly China, the market is expected to experience rapid growth fueled by an expanding biopharmaceutical sector and increasing emphasis on precision healthcare and personalized medicine. The adoption of advanced technologies in Japan and South Korea contributes to the region's significant surge in demand for advanced cell lysis solutions, positioning it as the fastest-growing segment of the market.

By Technique:

  • Reagent Based
  • Detergent
  • Enzymatic
  • Physical Disruption
  • Mechanical Homogenization
  • Ultrasonic Homogenization
  • Others

By Product Type:

  • Instruments
  • Reagents & Consumables

By Cell Type:

  • Mammalian Cells
  • Bacterial Cells
  • Yeast/Algae/Fungi
  • Plant Cells

By Application:

  • Cell organelle Isolation
  • Nucleic acid Isolation
  • Cell organelle Isolation
  • Nucleic acid Isolation

By Region:

  • North America
  • Europe
  • East Asia
  • South Asia & Oceania
  • Latin America
  • Middle East & Africa
Product Code: PMRREP33763

Table of Contents

1. Executive Summary

  • 1.1. Global Cell Lysis and Disruption Market Snapshot, 2023 and 2030
  • 1.2. Market Opportunity Assessment, 2023 - 2030, US$ Mn
  • 1.3. Key Market Trends
  • 1.4. Future Market Projections
  • 1.5. Premium Market Insights
  • 1.6. Industry Developments and Key Market Events
  • 1.7. PMR Analysis and Recommendations

2. Market Overview

  • 2.1. Market Scope and Definition
  • 2.2. Market Dynamics
    • 2.2.1. Drivers
    • 2.2.2. Restraints
    • 2.2.3. Opportunity
    • 2.2.4. Challenges
    • 2.2.5. Key Trends
  • 2.3. Technique Lifecycle Analysis
  • 2.4. Global Cell Lysis and Disruption Market: Value Chain
    • 2.4.1. List of Raw Material Supplier
    • 2.4.2. List of Manufacturers
    • 2.4.3. List of Distributors
    • 2.4.4. List of Applications
    • 2.4.5. Profitability Analysis
  • 2.5. Porter Five Force's Analysis
  • 2.6. Geopolitical Tensions: Market Impact
  • 2.7. Macro-Economic Factors
    • 2.7.1. Global Sectorial Outlook
    • 2.7.2. Global GDP Growth Outlook
    • 2.7.3. Global Parent Market Overview
  • 2.8. Forecast Factors - Relevance and Impact
  • 2.9. Regulatory and Product Type Landscape

3. Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 3.1. Key Highlights
    • 3.1.1. Market Volume (Units) Projections
    • 3.1.2. Market Size and Y-o-Y Growth
    • 3.1.3. Absolute $ Opportunity
  • 3.2. Market Size (US$ Mn) Analysis and Forecast
    • 3.2.1. Historical Market Size Analysis, 2013-2016
    • 3.2.2. Current Market Size Forecast, 2018-2026
  • 3.3. Global Cell Lysis and Disruption Market Outlook: Technique
    • 3.3.1. Introduction / Key Findings
    • 3.3.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Technique, 2018 - 2022
    • 3.3.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
      • 3.3.3.1. Reagent Based
      • 3.3.3.2. Detergent
      • 3.3.3.3. Enzymatic
      • 3.3.3.4. Physical Disruption
      • 3.3.3.5. Mechanical Homogenization
      • 3.3.3.6. Ultrasonic Homogenization
      • 3.3.3.7. Others
  • 3.4. Market Attractiveness Analysis: Technique
  • 3.5. Global Cell Lysis and Disruption Market Outlook: Product Type
    • 3.5.1. Introduction / Key Findings
    • 3.5.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Product Type, 2018 - 2022
    • 3.5.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
      • 3.5.3.1. Instruments
      • 3.5.3.2. Reagents & Consumables
  • 3.6. Market Attractiveness Analysis: Product Type
  • 3.7. Global Cell Lysis and Disruption Market Outlook: Cell Type
    • 3.7.1. Introduction / Key Findings
    • 3.7.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Cell Type, 2018 - 2022
    • 3.7.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
      • 3.7.3.1. Mammalian Cells
      • 3.7.3.2. Bacterial Cells
      • 3.7.3.3. Yeast/Algae/Fungi
      • 3.7.3.4. Plant Cells
  • 3.8. Market Attractiveness Analysis: Cell Type
  • 3.9. Global Cell Lysis and Disruption Market Outlook: Application
    • 3.9.1. Introduction / Key Findings
    • 3.9.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Application, 2018 - 2022
    • 3.9.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
      • 3.9.3.1. Cell organelle Isolation
      • 3.9.3.2. Nucleic acid Isolation
      • 3.9.3.3. Cell organelle Isolation
      • 3.9.3.4. Nucleic acid Isolation
  • 3.10. Market Attractiveness Analysis: Application

4. Global Cell Lysis and Disruption Market Outlook: Region

  • 4.1. Key Highlights
  • 4.2. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Region, 2018 - 2022
  • 4.3. Current Market Size (US$ Mn) and Volume (Units) Forecast By Region, 2023 - 2030
    • 4.3.1. North America
    • 4.3.2. Europe
    • 4.3.3. East Asia
    • 4.3.4. South Asia and Oceania
    • 4.3.5. Latin America
    • 4.3.6. Middle East & Africa (MEA)
  • 4.4. Market Attractiveness Analysis: Region

5. North America Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 5.1. Key Highlights
  • 5.2. Pricing Analysis
  • 5.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2018 - 2022
    • 5.3.1. By Country
    • 5.3.2. By Technique
    • 5.3.3. By Product Type
    • 5.3.4. By Cell Type
    • 5.3.5. By Application
  • 5.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2023 - 2030
    • 5.4.1. U.S.
    • 5.4.2. Canada
  • 5.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
    • 5.5.1. Reagent Based
    • 5.5.2. Detergent
    • 5.5.3. Enzymatic
    • 5.5.4. Physical Disruption
    • 5.5.5. Mechanical Homogenization
    • 5.5.6. Ultrasonic Homogenization
    • 5.5.7. Others
  • 5.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
    • 5.6.1. Instruments
    • 5.6.2. Reagents & Consumables
  • 5.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
    • 5.7.1. Mammalian Cells
    • 5.7.2. Bacterial Cells
    • 5.7.3. Yeast/Algae/Fungi
    • 5.7.4. Plant Cells
  • 5.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
    • 5.8.1. Cell organelle Isolation
    • 5.8.2. Nucleic acid Isolation
    • 5.8.3. Cell organelle Isolation
    • 5.8.4. Nucleic acid Isolation
  • 5.9. Market Attractiveness Analysis

6. Europe Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 6.1. Key Highlights
  • 6.2. Pricing Analysis
  • 6.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2018 - 2022
    • 6.3.1. By Country
    • 6.3.2. By Technique
    • 6.3.3. By Product Type
    • 6.3.4. By Cell Type
    • 6.3.5. By Application
  • 6.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2023 - 2030
    • 6.4.1. Germany
    • 6.4.2. France
    • 6.4.3. U.K.
    • 6.4.4. Italy
    • 6.4.5. Spain
    • 6.4.6. Russia
    • 6.4.7. Turkiye
    • 6.4.8. Rest of Europe
  • 6.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
    • 6.5.1. Reagent Based
    • 6.5.2. Detergent
    • 6.5.3. Enzymatic
    • 6.5.4. Physical Disruption
    • 6.5.5. Mechanical Homogenization
    • 6.5.6. Ultrasonic Homogenization
    • 6.5.7. Others
  • 6.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
    • 6.6.1. Instruments
    • 6.6.2. Reagents & Consumables
  • 6.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
    • 6.7.1. Mammalian Cells
    • 6.7.2. Bacterial Cells
    • 6.7.3. Yeast/Algae/Fungi
    • 6.7.4. Plant Cells
  • 6.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
    • 6.8.1. Cell organelle Isolation
    • 6.8.2. Nucleic acid Isolation
    • 6.8.3. Cell organelle Isolation
    • 6.8.4. Nucleic acid Isolation
  • 6.9. Market Attractiveness Analysis

7. East Asia Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 7.1. Key Highlights
  • 7.2. Pricing Analysis
  • 7.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2018 - 2022
    • 7.3.1. By Country
    • 7.3.2. By Technique
    • 7.3.3. By Product Type
    • 7.3.4. By Cell Type
    • 7.3.5. By Application
  • 7.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2023 - 2030
    • 7.4.1. China
    • 7.4.2. Japan
    • 7.4.3. South Korea
  • 7.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
    • 7.5.1. Reagent Based
    • 7.5.2. Detergent
    • 7.5.3. Enzymatic
    • 7.5.4. Physical Disruption
    • 7.5.5. Mechanical Homogenization
    • 7.5.6. Ultrasonic Homogenization
    • 7.5.7. Others
  • 7.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
    • 7.6.1. Instruments
    • 7.6.2. Reagents & Consumables
  • 7.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
    • 7.7.1. Mammalian Cells
    • 7.7.2. Bacterial Cells
    • 7.7.3. Yeast/Algae/Fungi
    • 7.7.4. Plant Cells
  • 7.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
    • 7.8.1. Cell organelle Isolation
    • 7.8.2. Nucleic acid Isolation
    • 7.8.3. Cell organelle Isolation
    • 7.8.4. Nucleic acid Isolation
  • 7.9. Market Attractiveness Analysis

8. South Asia & Oceania Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 8.1. Key Highlights
  • 8.2. Pricing Analysis
  • 8.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2018 - 2022
    • 8.3.1. By Country
    • 8.3.2. By Technique
    • 8.3.3. By Product Type
    • 8.3.4. By Cell Type
    • 8.3.5. By Application
  • 8.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2023 - 2030
    • 8.4.1. India
    • 8.4.2. Southeast Asia
    • 8.4.3. ANZ
    • 8.4.4. Rest of South Asia & Oceania
  • 8.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
    • 8.5.1. Reagent Based
    • 8.5.2. Detergent
    • 8.5.3. Enzymatic
    • 8.5.4. Physical Disruption
    • 8.5.5. Mechanical Homogenization
    • 8.5.6. Ultrasonic Homogenization
    • 8.5.7. Others
  • 8.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
    • 8.6.1. Instruments
    • 8.6.2. Reagents & Consumables
  • 8.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
    • 8.7.1. Mammalian Cells
    • 8.7.2. Bacterial Cells
    • 8.7.3. Yeast/Algae/Fungi
    • 8.7.4. Plant Cells
  • 8.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
    • 8.8.1. Cell organelle Isolation
    • 8.8.2. Nucleic acid Isolation
    • 8.8.3. Cell organelle Isolation
    • 8.8.4. Nucleic acid Isolation
  • 8.9. Market Attractiveness Analysis

9. Latin America Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 9.1. Key Highlights
  • 9.2. Pricing Analysis
  • 9.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2018 - 2022
    • 9.3.1. By Country
    • 9.3.2. By Technique
    • 9.3.3. By Product Type
    • 9.3.4. By Cell Type
    • 9.3.5. By Application
  • 9.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2023 - 2030
    • 9.4.1. Brazil
    • 9.4.2. Mexico
    • 9.4.3. Rest of Latin America
  • 9.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
    • 9.5.1. Reagent Based
    • 9.5.2. Detergent
    • 9.5.3. Enzymatic
    • 9.5.4. Physical Disruption
    • 9.5.5. Mechanical Homogenization
    • 9.5.6. Ultrasonic Homogenization
    • 9.5.7. Others
  • 9.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
    • 9.6.1. Instruments
    • 9.6.2. Reagents & Consumables
  • 9.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
    • 9.7.1. Mammalian Cells
    • 9.7.2. Bacterial Cells
    • 9.7.3. Yeast/Algae/Fungi
    • 9.7.4. Plant Cells
  • 9.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
    • 9.8.1. Cell organelle Isolation
    • 9.8.2. Nucleic acid Isolation
    • 9.8.3. Cell organelle Isolation
    • 9.8.4. Nucleic acid Isolation
  • 9.9. Market Attractiveness Analysis

10. Middle East & Africa Global Cell Lysis and Disruption Market Outlook: Historical (2018 - 2022) and Forecast (2023 - 2030)

  • 10.1. Key Highlights
  • 10.2. Pricing Analysis
  • 10.3. Historical Market Size (US$ Mn) and Volume (Units) Analysis By Market, 2018 - 2022
    • 10.3.1. By Country
    • 10.3.2. By Technique
    • 10.3.3. By Product Type
    • 10.3.4. By Cell Type
    • 10.3.5. By Application
  • 10.4. Current Market Size (US$ Mn) and Volume (Units) Forecast By Country, 2023 - 2030
    • 10.4.1. GCC
    • 10.4.2. Egypt
    • 10.4.3. South Africa
    • 10.4.4. Northern Africa
    • 10.4.5. Rest of Middle East & Africa
  • 10.5. Current Market Size (US$ Mn) and Volume (Units) Forecast By Technique, 2023 - 2030
    • 10.5.1. Reagent Based
    • 10.5.2. Detergent
    • 10.5.3. Enzymatic
    • 10.5.4. Physical Disruption
    • 10.5.5. Mechanical Homogenization
    • 10.5.6. Ultrasonic Homogenization
    • 10.5.7. Others
  • 10.6. Current Market Size (US$ Mn) and Volume (Units) Forecast By Product Type, 2023 - 2030
    • 10.6.1. Instruments
    • 10.6.2. Reagents & Consumables
  • 10.7. Current Market Size (US$ Mn) and Volume (Units) Forecast By Cell Type, 2023 - 2030
    • 10.7.1. Mammalian Cells
    • 10.7.2. Bacterial Cells
    • 10.7.3. Yeast/Algae/Fungi
    • 10.7.4. Plant Cells
  • 10.8. Current Market Size (US$ Mn) and Volume (Units) Forecast By Application, 2023 - 2030
    • 10.8.1. Cell organelle Isolation
    • 10.8.2. Nucleic acid Isolation
    • 10.8.3. Cell organelle Isolation
    • 10.8.4. Nucleic acid Isolation
  • 10.9. Market Attractiveness Analysis

11. Competition Landscape

  • 11.1. Market Share Analysis, 2022
  • 11.2. Market Structure
    • 11.2.1. Competition Intensity Mapping By Market
    • 11.2.2. Competition Dashboard
    • 11.2.3. Apparent Technique Capacity
  • 11.3. Company Profiles (Details - Overview, Financials, Strategy, Recent Developments)
    • 11.3.1. Thermo Fisher Scientific, Inc.
      • 11.3.1.1. Overview
      • 11.3.1.2. Segments and Technique
      • 11.3.1.3. Key Financials
      • 11.3.1.4. Market Developments
      • 11.3.1.5. Market Strategy
    • 11.3.2. Merck KGaA
      • 11.3.2.1. Overview
      • 11.3.2.2. Segments and Technique
      • 11.3.2.3. Key Financials
      • 11.3.2.4. Market Developments
      • 11.3.2.5. Market Strategy
    • 11.3.3. Bio-Rad Laboratories, Inc.
      • 11.3.3.1. Overview
      • 11.3.3.2. Segments and Technique
      • 11.3.3.3. Key Financials
      • 11.3.3.4. Market Developments
      • 11.3.3.5. Market Strategy
    • 11.3.4. F. Hoffmann-La Roche Ltd.
      • 11.3.4.1. Overview
      • 11.3.4.2. Segments and Technique
      • 11.3.4.3. Key Financials
      • 11.3.4.4. Market Developments
      • 11.3.4.5. Market Strategy
    • 11.3.5. QIAGEN
      • 11.3.5.1. Overview
      • 11.3.5.2. Segments and Technique
      • 11.3.5.3. Key Financials
      • 11.3.5.4. Market Developments
      • 11.3.5.5. Market Strategy
    • 11.3.6. Danaher
      • 11.3.6.1. Overview
      • 11.3.6.2. Segments and Technique
      • 11.3.6.3. Key Financials
      • 11.3.6.4. Market Developments
      • 11.3.6.5. Market Strategy
    • 11.3.7. Miltenyi Biotec
      • 11.3.7.1. Overview
      • 11.3.7.2. Segments and Technique
      • 11.3.7.3. Key Financials
      • 11.3.7.4. Market Developments
      • 11.3.7.5. Market Strategy
    • 11.3.8. Claremont BioSolutions, LLC
      • 11.3.8.1. Overview
      • 11.3.8.2. Segments and Technique
      • 11.3.8.3. Key Financials
      • 11.3.8.4. Market Developments
      • 11.3.8.5. Market Strategy
    • 11.3.9. IDEX
      • 11.3.9.1. Overview
      • 11.3.9.2. Segments and Technique
      • 11.3.9.3. Key Financials
      • 11.3.9.4. Market Developments
      • 11.3.9.5. Market Strategy
    • 11.3.10. Parr Instrument Company
      • 11.3.10.1. Overview
      • 11.3.10.2. Segments and Technique
      • 11.3.10.3. Key Financials
      • 11.3.10.4. Market Developments
      • 11.3.10.5. Market Strategy
    • 11.3.11. Covaris, LLC
      • 11.3.11.1. Overview
      • 11.3.11.2. Segments and Technique
      • 11.3.11.3. Key Financials
      • 11.3.11.4. Market Developments
      • 11.3.11.5. Market Strategy
    • 11.3.12. Cell Signaling Technology, Inc.
      • 11.3.12.1. Overview
      • 11.3.12.2. Segments and Technique
      • 11.3.12.3. Key Financials
      • 11.3.12.4. Market Developments
      • 11.3.12.5. Market Strategy
    • 11.3.13. Qsonica
      • 11.3.13.1. Overview
      • 11.3.13.2. Segments and Technique
      • 11.3.13.3. Key Financials
      • 11.3.13.4. Market Developments
      • 11.3.13.5. Market Strategy

12. Appendix

  • 12.1. Research Methodology
  • 12.2. Research Assumptions
  • 12.3. Acronyms and Abbreviations
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!