PUBLISHER: QYResearch | PRODUCT CODE: 1856163
PUBLISHER: QYResearch | PRODUCT CODE: 1856163
The global market for Encapsulant Materials for PV Modules was estimated to be worth US$ 6993 million in 2024 and is forecast to a readjusted size of US$ 7936 million by 2031 with a CAGR of 1.8% during the forecast period 2025-2031.
An encapsulant is used to provide adhesion between the solar cells, the top surface and the rear surface of the PV module. The encapsulant should be stable at elevated temperatures and high UV exposure. It should also be optically transparent and should have a low thermal resistance. EVA (ethyl vinyl acetate) is the most commonly used encapsulant material. EVA comes in thin sheets which are inserted between the solar cells and the top surface and the rear surface. This sandwich is then heated to 150 °C to polymerize the EVA and bond the module together. Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes; it provides optical coupling of PV cells and protection against environmental stress. Polymers must perform these functions under prolonged periods of high temperature, humidity, and UV radiation. When PV panels were first developed in the 1960s and the 1970s, the dominant encapsulants were based on polydimethyl siloxane (PDMS). Ethylene-co-vinyl acetate (EVA) is currently the dominant encapsulant chosen for PV applications, not because it has the best combination of properties, but because it is an economical option with an established history of acceptable durability. Getting new products onto the market is challenging because there is no room for dramatic improvements, and one must balance the initial cost and performance with the unknowns of long-term service life. Recently, there has been renewed interest in using alternative encapsulant materials with some significant manufacturers switching from EVA to polyolefin elastomer-based (POE) alternatives. The material typically used for this application is Ethylene-Vinyl Acetate (EVA). It had made such a name for itself in the market that it was synonymous with encapsulation, enjoying a monopoly for over three decades. Polyolefin (POE), however, is evolving strongly as an alternative, especially with the growing popularity of bifacial technology. Though bifacial is growing at a faster pace, monofacial market is still larger, meaning EVA still dominates this sector.
Global key players of encapsulant materials for PV modules include First, HIUV, Sveck, Cybrid Technologies, Betterial, etc. The top five players hold a share about 82%. Asia-Pacific is the largest market, has a share about 94%, followed by North America and Europe, with share 3% and 2%, separately.
Market Overview
The global market for encapsulant materials for PV modules is projected to grow steadily in the coming years. This growth is driven by the increasing demand for solar energy, which is fueled by concerns over climate change, fossil fuel depletion, and the need for renewable energy sources.
Market Trends
Shift Towards Alternative Materials: While Ethylene-co-vinyl acetate (EVA) has been the dominant encapsulant material for PV applications due to its economy and acceptable durability, there is a growing interest in alternative materials. Polyolefin elastomer-based (POE) alternatives are gaining popularity as they offer improved durability and resistance to environmental stress.
Increasing Demand for High-Efficiency Modules: The demand for high-efficiency PV modules is driving the need for encapsulant materials that can support higher temperatures and UV exposure without degradation.
Focus on Sustainability: Manufacturers are increasingly focusing on developing encapsulant materials that are environmentally friendly and have a lower carbon footprint.
Market Challenges
Price Volatility: The prices of raw materials used in the production of encapsulant materials can be volatile, which affects the cost and availability of encapsulant materials.
Regulatory Compliance: Manufacturers must comply with various regulatory standards and certifications to ensure the safety and reliability of their products. This can add to the cost and complexity of production.
Competition: The market is highly competitive, with several players vying for market share. This can lead to price wars and reduced profit margins for manufacturers.
Future Outlook
The future outlook for the encapsulant materials for PV modules market is positive. With the increasing demand for solar energy and the need for high-efficiency PV modules, manufacturers are expected to continue investing in research and development to develop new and improved encapsulant materials. Additionally, the shift towards alternative materials such as POE is expected to accelerate, driving further growth in the market.
In conclusion, the encapsulant materials for PV modules market is a dynamic and growing segment within the photovoltaic industry. With the increasing demand for solar energy and the need for high-efficiency modules, manufacturers are expected to continue innovating and expanding their product offerings to meet market demands.
This report aims to provide a comprehensive presentation of the global market for Encapsulant Materials for PV Modules, focusing on the total sales volume, sales revenue, price, key companies market share and ranking, together with an analysis of Encapsulant Materials for PV Modules by region & country, by Type, and by Application.
The Encapsulant Materials for PV Modules market size, estimations, and forecasts are provided in terms of sales volume (M Sqm) and sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Encapsulant Materials for PV Modules.
Market Segmentation
By Company
Segment by Type
Segment by Application
By Region
Chapter Outline
Chapter 1: Introduces the report scope of the report, global total market size (value, volume and price). This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.
Chapter 2: Detailed analysis of Encapsulant Materials for PV Modules manufacturers competitive landscape, price, sales and revenue market share, latest development plan, merger, and acquisition information, etc.
Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 5: Sales, revenue of Encapsulant Materials for PV Modules in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.
Chapter 6: Sales, revenue of Encapsulant Materials for PV Modules in country level. It provides sigmate data by Type, and by Application for each country/region.
Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product sales, revenue, price, gross margin, product introduction, recent development, etc.
Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.
Chapter 9: Conclusion.