PUBLISHER: QYResearch | PRODUCT CODE: 1874277
PUBLISHER: QYResearch | PRODUCT CODE: 1874277
The global market for Crop Breeding Technology was estimated to be worth US$ 4924 million in 2024 and is forecast to a readjusted size of US$ 7664 million by 2031 with a CAGR of 6.7% during the forecast period 2025-2031.
Global agriculture continues to face many challenges, including population growth, food security, and climate change. Technological innovation in the agricultural sector is needed to meet the growing demand for food. Innovations in plant breeding can help provide consumers with more choices while solving the challenges that farmers face every day in the field. Plant breeding is the process of crossing two plants to produce offspring with the best characteristics of their parents. Today, plants are bred to improve a variety of important characteristics, from improved agronomic performance to more consumer-oriented qualities such as size, taste, or color. By leveraging the genetic diversity that naturally exists in each crop family, plant scientists can determine which plants have the characteristics or traits they are looking for and design new varieties with those traits. Efficient and high-yield plant breeding requires advanced scientific knowledge and complex decision-making. Identifying and isolating genetic traits that help solve farmers' challenges can be difficult and time-consuming. After generations of research and discovery, plant breeding has moved beyond selecting parent plants based solely on appearance. It now includes a deep understanding of the genetic makeup of plants, allowing scientists to better predict which plants have the highest probability of success in the field and in the grocery store before crossing them.
Crop breeding technology is a vital part of agricultural production. Through technical means, the genetic characteristics of crops are improved, and crop yield, quality, pest resistance and adaptability are improved to meet the growing global population needs and the challenges brought by climate change. In recent years, with the advancement of modern science and technology, especially the rapid development of molecular biology, genomics and information technology, crop breeding technology is undergoing a revolution. The combination of traditional breeding methods and modern scientific and technological means has brought new opportunities and challenges to agricultural production.
At present, the global crop breeding technology market has shown a trend of diversification and intelligence. Traditional crop breeding techniques, such as hybrid breeding, variety selection and seed breeding, are still widely used in many regions, but their efficiency is relatively low and the cycle is long. In recent years, technologies such as gene editing, genome selection and molecular marker-assisted selection (MAS) have gradually emerged, significantly improving the efficiency and accuracy of crop breeding. In particular, the emergence of CRISPR gene editing technology has made the improvement of crop genomes more accurate and efficient, which can not only change the specific traits of crops, but also accelerate the research and development of new crop varieties.
In addition, with the rise of precision agriculture, technologies such as big data, the Internet of Things, and artificial intelligence have also been widely used in the field of crop breeding. By combining genomic data with environmental data, breeders can more accurately predict the interaction between crop genes and the environment, thereby optimizing breeding strategies and improving crop adaptability. Global large seed companies, such as Monsanto, DuPont Pioneer, and Bayer, have strengthened their dominant position in the crop breeding market by acquiring and investing in advanced genetic technology platforms.
Global key players of Microwave Coax Cable include BASF, Corteva Agriscience (Pioneer Seeds), Sinochem Holdings (Syngenta), Bayer, Advanta, etc. The top three players hold a share about 46%. Asia-Pacific is the largest market for Microwave Coax Cable and has a share about 37%, followed by North America and Europe, with share 29% and 19%, separately. In terms of product type, traditional breeding is the largest segment, occupied for a share of 28%. In terms of application, cereal seeds is the largest segment, occupied for a share of 53%.
This report aims to provide a comprehensive presentation of the global market for Crop Breeding Technology, focusing on the total sales revenue, key companies market share and ranking, together with an analysis of Crop Breeding Technology by region & country, by Type, and by Application.
The Crop Breeding Technology market size, estimations, and forecasts are provided in terms of sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Crop Breeding Technology.
Market Segmentation
By Company
Segment by Type
Segment by Application
By Region
Chapter Outline
Chapter 1: Introduces the report scope of the report, global total market size. This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.
Chapter 2: Detailed analysis of Crop Breeding Technology company competitive landscape, revenue market share, latest development plan, merger, and acquisition information, etc.
Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 5: Revenue of Crop Breeding Technology in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.
Chapter 6: Revenue of Crop Breeding Technology in country level. It provides sigmate data by Type, and by Application for each country/region.
Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product revenue, gross margin, product introduction, recent development, etc.
Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.
Chapter 9: Conclusion.