PUBLISHER: QYResearch | PRODUCT CODE: 1874441
PUBLISHER: QYResearch | PRODUCT CODE: 1874441
The global market for Pressure Swing Adsorption (PSA) Technology was estimated to be worth US$ 1290 million in 2024 and is forecast to a readjusted size of US$ 2082 million by 2031 with a CAGR of 6.9% during the forecast period 2025-2031.
Pressure swing adsorption (PSA) is a technique used to separate some gas species from a mixture of gases (typically air) under pressure according to the species' molecular characteristics and affinity for an adsorbent material. It operates at near-ambient temperature and significantly differs from the cryogenic distillation commonly used to separate gases. Selective adsorbent materials (e.g., zeolites, (aka molecular sieves), activated carbon, etc.) are used as trapping material, preferentially adsorbing the target gas species at high pressure. The process then swings to low pressure to desorb the adsorbed gas.
Global key players of Pressure Swing Adsorption (PSA) Technology include Linde, Haohua Chemical Science & Technology, UOP (Honeywell), Air Products, PKU PIONEER, etc. The top five players hold a share about 44%. North America is the largest market, and has a share about 33%, followed by Asia-Pacific and Europe with share 31% and 31%, separately. In terms of product type, Hydrogen Purification System is the largest segment, occupied for a share of 51%. In terms of application, Petrochemical Industry is the largest field with a share about 55 percent.
The market drivers of pressure swing adsorption (PSA) technology include the following:
1. Technological progress and innovation: dual-wheel drive of performance improvement and cost optimization
Adsorption material innovation
The research and development of new adsorbents (such as lithium-based molecular sieves and carbon molecular sieves) have significantly improved the separation efficiency and selectivity of PSA technology. For example, the LIX lithium-based oxygen adsorbent developed by Chengdu Yizhi Technology can achieve high-purity oxygen separation under low pressure conditions, reducing energy consumption by 10%-50%. The application of such materials also extends the service life of the adsorbent, reduces the frequency of replacement, and further reduces operating costs.
Equipment and process optimization
Automation control: Unmanned operation and remote monitoring are achieved through the PLC automatic control system, which improves the convenience of operation and reduces labor costs.
High-efficiency power equipment: Customized pulse centrifugal blowers and vacuum pumps reduce system energy consumption by 10%-15% and reduce noise pollution.
Modular design: The equipment can flexibly adjust production capacity according to demand, adapting to multiple scenarios from small medical oxygen generators to large industrial devices.
Cross-domain technology integration
The combination of PSA technology with the Internet of Things and artificial intelligence has achieved remote fault warning and intelligent optimization operation, improving system stability and user experience. For example, in the medical field, the status of home oxygen concentrators can be monitored through the Internet of Things to timely warn of equipment abnormalities and ensure patient safety.
2. Market demand growth: industrial upgrading and expansion of emerging fields
Demand in traditional industrial fields has grown steadily
Metallurgy and chemical industry: The demand for oxygen in blast furnace oxygen-enriched coal injection and electric furnace steelmaking processes in the steel industry continues to grow; hydrogen purification in the chemical industry (such as PSA hydrogen extraction technology) has expanded its application due to the demand for clean energy transformation.
Energy production: As the world pays more attention to hydrogen energy, PSA hydrogen extraction technology has become the preferred solution for hydrogen production from fossil fuels and hydrogen extraction from industrial by-product tail gas due to its low energy consumption and high efficiency.
Demand explosion in emerging fields
Medical and health: The aging population and the increase in patients with chronic respiratory diseases have driven the expansion of the home oxygen concentrator market. Policy support (such as the "Healthy China 2030" Planning Outline) has further accelerated the popularization of medical PSA oxygen generation equipment.
Environmental protection and energy saving: The application of PSA technology in waste gas treatment (such as removing oxygen and impurities) and industrial by-product gas recovery helps enterprises achieve low-carbon transformation, which is in line with the global environmental protection trend.
3. Policy support: Carbon neutrality goals and industrial incentives in parallel
"Dual carbon" strategy promotion
Many countries around the world have introduced carbon neutrality policies (such as China's "Carbon Peak Action Plan before 2030") to encourage enterprises to adopt low-carbon technologies such as PSA. For example, PSA nitrogen production technology has become the preferred solution for steel, chemical and other industries to replace traditional deep cold air separation units due to its chemical pollution-free and low energy consumption.
Fiscal and tax incentives
The government supports the research and development and application of PSA technology through subsidies, tax exemptions and other measures. For example, China's support policy for the hydrogen energy industry has directly promoted the market promotion of PSA hydrogen extraction technology.
Industry standards and specifications
Strict environmental protection regulations (such as waste gas emission standards) have prompted companies to choose PSA technology to meet compliance requirements, indirectly promoting market demand.
4. Cost-effectiveness advantage: balance between long-term economic efficiency and environmental protection value
Initial investment and long-term benefits
Although the initial cost of PSA equipment is high, its operating cost is significantly lower than that of traditional methods. For example, PSA nitrogen generators avoid the cost of liquid nitrogen transportation and storage by producing gas on site, and the long-term use cost can be reduced by more than 40%.
Improved resource utilization efficiency
PSA technology can recycle industrial by-product gases (such as hydrogen and carbon dioxide) and reduce resource waste. For example, the "pressure swing adsorption method for recycling industrial by-product gas" of Southwest Chemical Research Institute has been applied in hundreds of units, achieving the goals of high efficiency, environmental protection and energy saving.
Transformation of environmental benefits into economic value
With the development of the carbon trading market, the carbon emissions reduced by enterprises through PSA technology can be converted into carbon credit income, further enhancing the economic attractiveness of the technology.
The growth of the PSA technology market is the result of the combined effect of technological progress, market demand, policy support and cost-effectiveness. In the future, with the acceleration of clean energy transformation and stricter environmental protection requirements, PSA technology will play a more critical role in industrial gas separation, hydrogen energy industry chain, medical health and other fields, and its market potential will continue to be released.
This report aims to provide a comprehensive presentation of the global market for Pressure Swing Adsorption (PSA) Technology, focusing on the total sales revenue, key companies market share and ranking, together with an analysis of Pressure Swing Adsorption (PSA) Technology by region & country, by Type, and by Application.
The Pressure Swing Adsorption (PSA) Technology market size, estimations, and forecasts are provided in terms of sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Pressure Swing Adsorption (PSA) Technology.
Market Segmentation
By Company
Segment by Type
Segment by Application
By Region
Chapter Outline
Chapter 1: Introduces the report scope of the report, global total market size. This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.
Chapter 2: Detailed analysis of Pressure Swing Adsorption (PSA) Technology company competitive landscape, revenue market share, latest development plan, merger, and acquisition information, etc.
Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.
Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.
Chapter 5: Revenue of Pressure Swing Adsorption (PSA) Technology in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.
Chapter 6: Revenue of Pressure Swing Adsorption (PSA) Technology in country level. It provides sigmate data by Type, and by Application for each country/region.
Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product revenue, gross margin, product introduction, recent development, etc.
Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.
Chapter 9: Conclusion.