PUBLISHER: Roots Analysis | PRODUCT CODE: 1803897
PUBLISHER: Roots Analysis | PRODUCT CODE: 1803897
As per Roots Analysis, the global neuromorphic computing market size is estimated to grow from USD 2.60 billion in the current year to USD 61.48 billion by 2035, at a CAGR of 33.32% during the forecast period, till 2035.
The opportunity for neuromorphic computing market has been distributed across the following segments:
Type of Offering
Type of Application
Type of Deployment
Type of End User
Geographical Regions
Neuromorphic Computing Market: Growth and Trends
Neuromorphic computing is a computing paradigm that mimics the functioning of the human brain. It typically involves both hardware and software designed to emulate the brain's neural structure and synapses, allowing for more natural and efficient information processing. The first silicon neurons and synapses were created by Misha Mahowald and Carver Mead, who established the neuromorphic computing model in 1980. This approach is based on the biological method where the brain processes information in parallel through a network of interconnected neurons and synapses, which transmit chemical and electrical signals to facilitate communication between neurons.
In this regard, spiking neural networks (SNNs) represent a fundamental concept of neuromorphic computing, reflecting how biological systems communicate. SNNs consist of artificial neurons and synapses that spike, differing from traditional artificial neural networks (ANNs) that rely on continuous synchronous signals; instead, SNNs use spikes for data processing, improving power efficiency in real-time edge applications.
Within this framework, the hardware for neuromorphic computing includes specialized chips designed to replicate brain-like processing, playing a crucial role. These neuromorphic chips function based on neuromorphic principles to execute various artificial intelligence tasks, such as recognition, learning, and decision-making, more effectively than conventional silicon-based architectures. This advanced computing technology has enabled industries to develop machines capable of performing complex tasks with greater efficiency and precision.
The aim of neuromorphic systems is to function with significantly reduced power consumption, excelling in low-power applications such as mobile devices, edge computing solutions, and sensor networks. Furthermore, their ability to process data in parallel, handle real-time information, and adaptively learn with scalability underscores their significance across diverse sectors, including AI, robotics, healthcare, and energy-efficient computing. As the demand for artificial intelligence and machine learning rises, along with the integration of neuromorphic systems in healthcare, the neuromorphic computing market is expected to experience significant growth during the forecast period.
Neuromorphic Computing Market: Key Segments
Based on type of offering, the global neuromorphic computing market is segmented into hardware and software. According to our estimates, currently, the hardware segment which consists of neuromorphic processors, memory chips, sensors, and other devices, captures the majority share of the market. This can be attributed to the extensive development of neuromorphic chips, essential for brain-inspired computing architectures, which are crucial for executing tasks like real-time data processing, decision-making, and pattern recognition, thereby propelling market growth.
However, the market for software segment is expected to grow at a higher CAGR during the forecast period, driven by the growing adoption of neuromorphic computing software across various sectors for simulation and algorithm development, particularly with cloud deployment options available.
Based on type of application, the neuromorphic computing market is segmented into data processing, image processing, object processing, pattern recognition, signal processing, and others. According to our estimates, currently, the image-processing application captures the majority of the market. This can be attributed to the substantial demand from autonomous vehicles where image processing is crucial for tasks like object detection, lane tracking, and real-time decision-making. Further, the extensive utilization of image processing in medical imaging, robotics, drones, and consumer electronics boosts the demand for neuromorphic computing.
However, the signal processing segment is expected to grow at a higher CAGR during the forecast period. This can be ascribed to the increasing demand from telecommunications aimed at optimizing network traffic management, signal transmission, and data routing. Additionally, the growing adoption of this technology in hearing aids, radar, and sonar systems is also expected to contribute to market growth.
Based on type of deployment, the neuromorphic computing market is segmented into edge computing and cloud computing deployment. According to our estimates, currently, edge computing deployment captures the majority share of the market. This can be attributed to the critical role of edge computing in achieving low latency and real-time processing, enabling devices to react immediately without delays in data transmission. Additionally, edge devices typically operate with limited power resources, making them energy-efficient, which aligns well with neuromorphic chips designed for local data processing.
However, the cloud computing segment is expected to grow at a higher CAGR during the forecast period. This can be ascribed to the continuous technological advancements in a comprehensive platform for managing large volumes of data for businesses.
Based on type of end user, the neuromorphic computing market is segmented into automotive, consumer electronics, healthcare, industrial, IT& telecom, military & defense, retail, and others. According to our estimates, currently, military and defense sector captures the majority share of the market. This can be attributed to the sector's specific needs and its uses in areas such as radar systems, surveillance, and combat systems, which require real-time decision-making, sophisticated data processing, and energy efficiency, thereby driving the growth of the neuromorphic computing market.
However, the automotive sector is expected to grow at a higher CAGR during the forecast period, owing to the increasing production of autonomous vehicles and advanced driver-assistance systems.
Based on geographical regions, the neuromorphic computing market is segmented into North America, Europe, Asia, Latin America, Middle East and North Africa, and the rest of the world. According to our estimates, currently, North America captures the majority share of the market. However, the market in Asia is expected to grow at a higher CAGR during the forecast period, owing to the increased adoption of artificial intelligence, machine learning, IoT, and deep learning technologies, along with the growth of the IT sector in the region.
Neuromorphic Computing Market: Research Coverage
The report on the neuromorphic computing market features insights on various sections, including:
Key Questions Answered in this Report
Reasons to Buy this Report
Additional Benefits