PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1359003
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1359003
According to Stratistics MRC, the Global 3D Printing Market is accounted for $20.98 billion in 2023 and is expected to reach $101.77 billion by 2030 growing at a CAGR of 25.3% during the forecast period. 3D printing or additive manufacturing is the creation of a three-dimensional object from a CAD model or a digital 3D model. To make a 3D item, layers of material are built up in an additive process. It takes digital drawings from computer-aided design (CAD) software and turns them into thin, digital, horizontal cross-sections that are built up layer by layer until the model is finished. It provides an abundance of chances for the creation, design, and implementation of unique architectural shapes, building methods, and materials. It is a cutting-edge, quick, and agile way for producing products.
According to an article by Interesting Engineering, engineers at the University of New South Wales, Sydney, published a paper wherein they successfully developed a 3D bio-printed device, F3DB, which can directly transfer multi-layered biomaterials on the surface of the tissues and internal organs.
3D printing has transformed the way that automobiles are created, both conceptually and physically. Automakers are able to use 3D printing to build specialized and unique parts, such as interior trims, dashboard components, and even distinctive external aspects based on the desires of specific customers. It makes it possible to produce spare parts as needed, eliminating the need for massive warehouses to keep a variety of components. In a market that is changing quickly, it is assisting manufacturers in remaining inventive and competitive. The automobile sector's reliance on 3D printing is boosting industry growth.
3D printing of products with mixed materials and technology, such as circuit boards, is still under expansion. Although the technique represents a significant advancement in procedure, the materials that may be employed are still constrained. Additionally, the absence of standardized testing to confirm the mechanical qualities (strength, toughness, stiffness, and hardness) of the materials employed affects the accuracy and repeatability of the objects created by 3D printing. As a result, the demand is being hampered by material characterization and standardisation for 3D printing.
Governments all around the world are launching initiatives and providing financing to educational institutions, research facilities, and research and technology organizations to further study the possibilities offered by 3D printing technology and promote its growth. Industrialists and governments all around the world are becoming interested in 3D printing as new applications for the technology emerge. National programmes have been put in place in the US, UK, and Canada to support university-level 3D printing research, promote technology, and foster the creation of start-ups.
3D printing has become an appealing area for investment across a wide range of sectors as a result of technological breakthroughs, cost reductions, industry acceptance, and the potential for innovation and disruption. This has resulted in increased investments in the technology. It includes spending money on gear, software, materials, certification, education in additive manufacturing, and personnel training. A 3-dimensional system requires a lot of resources and capital expenses to set up. As a result, the biggest barrier to the adoption of this technology is reported to be high initial costs.
The COVID-19 pandemic outbreak has had a major effect on the world economy as a whole and, therefore, the 3D printing sector. The whole lockout has an impact on 3D printing industry production. The nation's logistics and supply chain have been completely disrupted, which is blamed for this together with the labour deficit. In the first and second quarters of the epidemic, the suspension of 3D printing output negatively affected market growth generally. After the epidemic, there were an increasing number of applications, which gradually increased market demand.
The software segment is estimated to have a lucrative growth. In the automotive, aerospace and defence, construction and engineering industries, design software is frequently used to create the designs of the items that will be printed. The hardware of the printer and design software work together to create the items that will be produced. Demand for the category is anticipated to be driven by its capacity to save scanned pictures of things, regardless of their dimensions or size, enabling 3-dimensional printing of these products as needed.
The selective laser sintering (SLS) segment is anticipated to witness the fastest CAGR growth during the forecast period. Selective laser sintering (SLS) is a powder-based additive manufacture technology that uses energy provided by the laser to melt and fuse the powders and then stack layer by layer to form a printed part based on 3D model data. SLS 3D printers comprise of a high-powered laser to fuse small particles of polymer powder. The segment's expansion is being fuelled by its powerful laser sintering, flexible materials, high precision, and high resolution.
Asia Pacific is projected to hold the largest market share during the forecast period. The use of 3D printing for prototype and advanced production has significantly increased in the region. One of the biggest producers of consumer electronics and automobiles is China. Technology development in China is another significant market-stimulating driver. The rise has been spurred by government efforts, robust research and development capabilities, and foreign direct investment (FDI). Rapid urbanization and dominance on consumer electronics manufacturing are further factors boosting 3D printing demand in the area.
North America is projected to have the highest CAGR over the forecast period, owing to the widespread implementation of additive manufacturing The U.S. and Canada are two examples of North American nations that were among the leading and early users of these technologies in a variety of manufacturing processes. Many additive manufacturing industry companies with solid technical competence in additive manufacturing methods are based in this region. The region is also witnessing a series of investments and collaborations in various sectors. Also, changing consumer preferences and a rising need for customization have bought about a need to create flexible bands and electronics systems that could be realized using 3D printing technology, thereby driving its growth.
Some of the key players profiled in the 3D Printing Market include: 3DCeram, Canon Inc., Arcam AB, 3D Systems Inc., EnvisionTec, Autodesk, Inc., GE Additive, Dassault Systemes, ExOne, Materialise NV, Electro Optical Systems GmbH, Shapeways Inc, Organovo Holdings, HP Inc, Desktop Metal Inc, Proto Labs, Optomec, Voxeljet AG, Tiertime and Stratasys Limited.
In March 2023, Materialise collaborated with Exactech, which is a developer of innovative instrumentation, implants, and other smart technologies for joint replacement surgery, to provide advanced treatment alternatives for patients with severe shoulder defects.
In February 2023, Stratasys collaborated with Ricoh USA, Inc. to offer on-demand 3D-printed anatomic models for clinical settings. Under this agreement, Stratasys' patient-specific 3D solutions integrated with its 3D printing technology; the cloud-based segmentation-as-a-service solution from Axial3D, a medical technology manufacturer; and precision additive manufacturing services from Ricoh combined to develop a single, convenient solution.
In February 2023, Desktop Metal launched Einstein Pro XL, an affordable, high-accuracy, high-throughput 3D printer ideal for dental labs, orthodontists, and other medical device manufacturers.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.