Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1447042

Cover Image

PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1447042

DNA Microarray for Agriculture Market Forecasts to 2030 - Global Analysis By Microarray Type (cDNA Microarrays, Oligonucleotide Microarrays, SNP Microarrays and Other Microarray Types), Crop Type, Technology, Application, End User and By Geography

PUBLISHED:
PAGES: 200+ Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
PDF (Single User License)
USD 4150
PDF (2-5 User License)
USD 5250
PDF & Excel (Site License)
USD 6350
PDF & Excel (Global Site License)
USD 7500

Add to Cart

According to Stratistics MRC, the Global DNA Microarray for Agriculture Market is accounted for $3.7 billion in 2023 and is expected to reach $7.6 billion by 2030 growing at a CAGR of 10.7% during the forecast period. DNA microarrays have found valuable applications in agriculture, revolutionizing crop research, breeding, and management practices. In agriculture, these microarrays are utilized to analyze the expression of thousands of genes simultaneously, providing a comprehensive understanding of plant genomes. They enable researchers to study gene expression patterns in response to environmental factors, stress, and disease. In crop breeding, DNA microarrays facilitate marker-assisted selection by identifying genes associated with desirable traits, accelerating the development of improved varieties.

Market Dynamics:

Driver:

Need for efficient and sustainable food production

As a key technology in precision agriculture, DNA microarrays enable rapid and simultaneous analysis of plant genomes, aiding in the development of high-yielding and resilient crops. By facilitating marker-assisted selection, these tools accelerate breeding programs for improved crop traits. Additionally, they contribute to the identification of genes related to stress resistance and environmental adaptability. Thus the need for sustainable farming practices amplifies the market's significance, positioning DNA microarrays as crucial tools for advancing agricultural productivity and ensuring global food security.

Restraint:

High initial investment

The substantial costs associated with equipment, infrastructure, and skilled personnel deter smaller farms and resource-limited regions from embracing this advanced technology. This financial barrier restricts widespread accessibility and hampers the potential benefits of DNA microarrays in optimizing crop yields and ensuring food security. As a consequence, the market faces challenges in achieving broader adoption, limiting its impact on agricultural practices hampering the market growth.

Opportunity:

Continuous advancements in microarray technology

Enhanced precision, higher throughput and cost-effectiveness are driving adoption. These innovations enable comprehensive analysis of plant genomes, accelerating crop improvement through marker-assisted selection for desirable traits. The evolving technology facilitates rapid identification of genes associated with stress resistance, disease tolerance, and yield optimization. As a result, farmers and researchers benefit from improved crop varieties, efficient pest management, and sustainable agricultural practices.

Threat:

Complex data analysis

Complex datasets demand sophisticated computational resources and expertise, raising costs for implementation and maintenance. Small-scale agricultural enterprises may face barriers in adopting these technologies due to financial constraints and a lack of skilled personnel. Moreover, intricate data interpretation can lead to delays in decision-making, diminishing the agility required in farming. As a result, the adoption rate of DNA microarray technologies in agriculture may be hindered the market growth.

Covid-19 Impact

With restrictions on movement and lab closures, the deployment and adoption of DNA microarray technologies in agriculture faced challenges. However, the crisis has also underscored the importance of resilient and advanced agricultural technologies. As the industry adapts to the new normal, there is an increased focus on leveraging DNA microarrays for precision farming, crop improvement, and disease resistance, driving the market towards recovery and future growth in enhancing agricultural sustainability.

The cDNA microarrays segment is expected to be the largest during the forecast period

The cDNA microarrays segment is estimated to have a lucrative growth. cDNA microarrays have revolutionized the DNA microarray landscape in agriculture. Offering enhanced gene expression analysis, they enable precise profiling of plant responses to environmental factors, diseases, and stress. This technology facilitates the identification of key genetic markers for crop improvement, disease resistance, and yield optimization. As a result, the DNA Microarray for Agriculture Market has experienced a substantial boost, with increased demand for advanced tools driving innovation.

The hybridization segment is expected to have the highest CAGR during the forecast period

The hybridization segment is anticipated to witness the highest CAGR growth during the forecast period, as this technique enables the simultaneous analysis of thousands of genes, facilitating rapid identification of desirable traits in crops. The market benefits from enhanced crop breeding, disease resistance, and yield optimization. Moreover, hybridization in DNA microarrays expedites the development of genetically superior plants, meeting the increasing global demand for sustainable and high-yielding agriculture.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period owing to the growing emphasis on sustainable agriculture and food security in the region. Key players are investing in research and development to enhance product offerings. Furthermore, Asia Pacific farmers have been early adopters of new technologies, including DNA microarrays, recognizing their potential to improve efficiency, yields, and profitability. contribute to the market's expansion.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period, due to its significant role in functional genomics by helping researchers understand the functions of various genes in plant systems. This information is fundamental for targeted crop improvement strategies. Additionally, governments in North America, particularly the United States and Canada, invest heavily in agricultural research and development, including genomics and related technologies like DNA microarrays. This funding fuels innovation and facilitates the adoption of new technologies in the agricultural sector.

Key players in the market

Some of the key players in the DNA Microarray for Agriculture Market include Eurofins Genomics, Affymetrix, Agilent Technologies , Illumina, Inc., Applied Microarrays, Arrayit Corporation, LCG Genomics, Inqaba Biotec, LC Sciences, Biometrix Technology Inc., Oxford Gene Technology (OGT), PerkinElmer, Inc., Greenea Biosciences, BioCat GmbH , Scienion AG and RayBiotech, Inc.

Key Developments:

In January 2024, Agilent Technologies Inc. announced an agreement with Incyte that will bring together Agilent's expertise and proven track record in the development of companion diagnostics (CDx) to support the development and commercialization of Incyte's hematology and oncology portfolio.

In January 2024, Illumina Inc announced it has signed an agreement with Janssen Research & Development, LLC (Janssen). This collaboration will be the first relating to the development of Illumina's novel molecular residual disease (MRD) assay, a whole-genome sequencing (WGS) multi-cancer research solution

In September 2022, Eurofins Genomics has partnered with Concentric by Ginkgo Bioworks on an expanded program that will serve as an early warning system to detect new or emerging SARS-CoV-2 variants, and can facilitate response to future travel-associated outbreaks and pandemics.

Microarray Types Covered:

  • cDNA Microarrays
  • Oligonucleotide Microarrays
  • SNP Microarrays
  • Other Microarray Types

Crop Types Covered:

  • Vegetables
  • Cereals
  • Fruits
  • Legume
  • Other Crop Types

Technologies Covered:

  • Hybridization
  • Fluorescent Labeling
  • Bioinformatics & Computational
  • Single Nucleotide Polymorphism (SNP) Microarray
  • Functional Genomics
  • Other Technologies

Applications Covered:

  • Genotyping & Marker Discovery
  • Disease Resistance & Pathogen Detection
  • Abiotic Stress Tolerance
  • Nutrient Utilization & Metabolism Studies
  • Crop Monitoring in Precision Agriculture
  • Epigenetics Studies
  • Other Applications

End Users Covered:

  • Research Institutions & Universities
  • Biotechnology Companies
  • Agrochemicals
  • Plant Breeders & Geneticists
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances
Product Code: SMRC25303

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global DNA Microarray for Agriculture Market, By Microarray Type

  • 5.1 Introduction
  • 5.2 cDNA Microarrays
  • 5.3 Oligonucleotide Microarrays
  • 5.4 SNP Microarrays
  • 5.5 Other Microarray Types

6 Global DNA Microarray for Agriculture Market, By Crop Type

  • 6.1 Introduction
  • 6.2 Vegetables
  • 6.3 Cereals
  • 6.4 Fruits
  • 6.5 Legume
  • 6.6 Other Crop Types

7 Global DNA Microarray for Agriculture Market, By Technology

  • 7.1 Introduction
  • 7.2 Hybridization
  • 7.3 Fluorescent Labeling
  • 7.4 Bioinformatics & Computational
  • 7.5 Single Nucleotide Polymorphism (SNP) Microarray
  • 7.6 Functional Genomics
  • 7.7 Other Technologies

8 Global DNA Microarray for Agriculture Market, By Application

  • 8.1 Introduction
  • 8.2 Genotyping & Marker Discovery
  • 8.3 Disease Resistance & Pathogen Detection
  • 8.4 Abiotic Stress Tolerance
  • 8.5 Nutrient Utilization & Metabolism Studies
  • 8.6 Crop Monitoring in Precision Agriculture
  • 8.7 Epigenetics Studies
  • 8.8 Other Applications

9 Global DNA Microarray for Agriculture Market, By End User

  • 9.1 Introduction
  • 9.2 Research Institutions & Universities
  • 9.3 Biotechnology Companies
  • 9.4 Agrochemicals
  • 9.5 Plant Breeders & Geneticists
  • 9.6 Other End Users

10 Global DNA Microarray for Agriculture Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Eurofins Genomics
  • 12.2 Affymetrix
  • 12.3 Agilent Technologies
  • 12.4 Illumina, Inc.
  • 12.5 Applied Microarrays
  • 12.6 Arrayit Corporation
  • 12.7 LCG Genomics
  • 12.8 Inqaba Biotec
  • 12.9 LC Sciences
  • 12.10 Biometrix Technology Inc.
  • 12.11 Oxford Gene Technology (OGT)
  • 12.12 PerkinElmer, Inc.
  • 12.13 Greenea Biosciences
  • 12.14 BioCat GmbH
  • 12.15 Scienion AG
  • 12.16 RayBiotech, Inc.
Product Code: SMRC25303

List of Tables

  • Table 1 Global DNA Microarray for Agriculture Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global DNA Microarray for Agriculture Market Outlook, By Microarray Type (2021-2030) ($MN)
  • Table 3 Global DNA Microarray for Agriculture Market Outlook, By cDNA Microarrays (2021-2030) ($MN)
  • Table 4 Global DNA Microarray for Agriculture Market Outlook, By Oligonucleotide Microarrays (2021-2030) ($MN)
  • Table 5 Global DNA Microarray for Agriculture Market Outlook, By SNP Microarrays (2021-2030) ($MN)
  • Table 6 Global DNA Microarray for Agriculture Market Outlook, By Other Microarray Types (2021-2030) ($MN)
  • Table 7 Global DNA Microarray for Agriculture Market Outlook, By Crop Type (2021-2030) ($MN)
  • Table 8 Global DNA Microarray for Agriculture Market Outlook, By Vegetables (2021-2030) ($MN)
  • Table 9 Global DNA Microarray for Agriculture Market Outlook, By Cereals (2021-2030) ($MN)
  • Table 10 Global DNA Microarray for Agriculture Market Outlook, By Fruits (2021-2030) ($MN)
  • Table 11 Global DNA Microarray for Agriculture Market Outlook, By Legume (2021-2030) ($MN)
  • Table 12 Global DNA Microarray for Agriculture Market Outlook, By Other Crop Types (2021-2030) ($MN)
  • Table 13 Global DNA Microarray for Agriculture Market Outlook, By Technology (2021-2030) ($MN)
  • Table 14 Global DNA Microarray for Agriculture Market Outlook, By Hybridization (2021-2030) ($MN)
  • Table 15 Global DNA Microarray for Agriculture Market Outlook, By Fluorescent Labeling (2021-2030) ($MN)
  • Table 16 Global DNA Microarray for Agriculture Market Outlook, By Bioinformatics & Computational (2021-2030) ($MN)
  • Table 17 Global DNA Microarray for Agriculture Market Outlook, By Single Nucleotide Polymorphism (SNP) Microarray (2021-2030) ($MN)
  • Table 18 Global DNA Microarray for Agriculture Market Outlook, By Functional Genomics (2021-2030) ($MN)
  • Table 19 Global DNA Microarray for Agriculture Market Outlook, By Other Technologies (2021-2030) ($MN)
  • Table 20 Global DNA Microarray for Agriculture Market Outlook, By Application (2021-2030) ($MN)
  • Table 21 Global DNA Microarray for Agriculture Market Outlook, By Genotyping & Marker Discovery (2021-2030) ($MN)
  • Table 22 Global DNA Microarray for Agriculture Market Outlook, By Disease Resistance & Pathogen Detection (2021-2030) ($MN)
  • Table 23 Global DNA Microarray for Agriculture Market Outlook, By Abiotic Stress Tolerance (2021-2030) ($MN)
  • Table 24 Global DNA Microarray for Agriculture Market Outlook, By Nutrient Utilization & Metabolism Studies (2021-2030) ($MN)
  • Table 25 Global DNA Microarray for Agriculture Market Outlook, By Crop Monitoring in Precision Agriculture (2021-2030) ($MN)
  • Table 26 Global DNA Microarray for Agriculture Market Outlook, By Epigenetics Studies (2021-2030) ($MN)
  • Table 27 Global DNA Microarray for Agriculture Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 28 Global DNA Microarray for Agriculture Market Outlook, By End User (2021-2030) ($MN)
  • Table 29 Global DNA Microarray for Agriculture Market Outlook, By Research Institutions & Universities (2021-2030) ($MN)
  • Table 30 Global DNA Microarray for Agriculture Market Outlook, By Biotechnology Companies (2021-2030) ($MN)
  • Table 31 Global DNA Microarray for Agriculture Market Outlook, By Agrochemicals (2021-2030) ($MN)
  • Table 32 Global DNA Microarray for Agriculture Market Outlook, By Plant Breeders & Geneticists (2021-2030) ($MN)
  • Table 33 Global DNA Microarray for Agriculture Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!