PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1797900
PUBLISHER: Stratistics Market Research Consulting | PRODUCT CODE: 1797900
According to Stratistics MRC, the Global Glass Fiber Market is accounted for $25.82 billion in 2025 and is expected to reach $42.28 billion by 2032 growing at a CAGR of 7.3% during the forecast period. Glass fiber, sometimes referred to as fiberglass, is a strong, lightweight material composed of incredibly thin glass strands. High-temperature melting of silica sand and other minerals is followed by the extrusion of molten glass through tiny holes to create thin filaments. In order to create composites with superior thermal and electrical insulation, corrosion resistance, and high tensile strength, these filaments are either woven into textiles or mixed with resins. Moreover, glass fiber's durability and adaptability make it a popular material for reinforced plastics, insulation, and structural elements in the consumer goods, automotive, aerospace, marine, and wind energy sectors.
According to the U.S. Department of Energy's energy bandwidth study, in U.S. glass fiber-reinforced polymer (GFRP) composite manufacturing across four applications-which represent about 47 % of U.S. glass fiber usage-there exist significant on-site energy savings opportunities when adopting state-of-the-art or R&D technologies.
Increase in infrastructure and construction projects
One of the biggest markets for glass fiber is the construction sector, which uses it in corrosion-resistant piping, wall panels, roofing shingles, reinforced concrete, and plumbing fixtures. Because it doesn't corrode, it's especially useful in areas with high humidity or along the coast, where steel reinforcements would eventually deteriorate. Glass fiber-reinforced polymers (GFRP) offer durability and lower maintenance needs in infrastructure applications like water treatment plants, bridges, and tunnels. Additionally, large-scale public infrastructure investments and the fast urbanization of emerging economies have raised demand for long-lasting, weather-resistant, and reasonably priced building materials, all of which glass fiber successfully satisfies.
High production energy consumption
The energy-intensive process of making glass fiber involves melting raw materials like alumina, limestone, and silica sand at temperatures that frequently surpass 1,500°C. Manufacturers are exposed to changes in the price of fuel and electricity due to this energy requirement, which also raises operating costs. These expenses can have a big effect on profitability in areas with high energy prices or stringent carbon emission laws. Furthermore, regulators and environmental organizations are also interested in the industry's carbon footprint, which could result in future limitations or the requirement for expensive investments in cleaner production technologies.
Growth in the use of renewable energy
One of the most promising growth prospects for glass fiber manufacturers, especially in the wind power sector, is the swift global transition to clean energy. Glass fiber provides the high tensile strength, fatigue resistance, and low density needed for wind turbine blades at a competitive price. High-performance glass fiber composites will be used more frequently as offshore wind farms proliferate due to the growing need for larger blades, which are frequently longer than 100 meters. Moreover, glass fiber's place in the supply chain for renewable energy could also be strengthened by advancements in bio-resin integration and blade recycling, which could assist the industry in meeting stringent sustainability goals.
Increasing competition from other substances
The market share of glass fiber is directly threatened by the quick development of substitute materials like carbon fiber, basalt fiber, advanced thermoplastics, and engineered metals. Carbon fiber continues to gain popularity despite its higher cost in applications where performance and weight reduction are crucial, such as high-end automotive, sports equipment, and aerospace. Similar to how aluminum and stainless steel alloys have improved their strength-to-weight ratios and corrosion resistance, basalt fiber provides superior thermal and chemical resistance in specific environments. Additionally, glass fiber's dominance in a number of industries is being diminished by the increasing variety of materials available to end users, who can select solutions that are better suited to their requirements.
The COVID-19 pandemic caused widespread supply chain disruptions, factory shutdowns, and decreased demand from important end-use industries like aerospace, automotive, and construction, all of which had a major short-term negative impact on the glass fiber market. Order cancellations and inventory accumulations resulted from manufacturing slowdowns and infrastructure project delays brought on by lockdowns and restrictions in early 2020. Production capacities were further taxed by shortages of raw materials and logistical bottlenecks. The market did, however, start to recover as economies reopened and governments implemented stimulus packages, especially in the areas of renewable energy and infrastructure.
The roving segment is expected to be the largest during the forecast period
The roving segment is expected to account for the largest market share during the forecast period because of its high tensile strength, resistance to corrosion, and ease of handling in composite manufacturing processes, which account for its extensive use in wind energy, automotive, construction, and marine uses. Roving, which is made up of continuous glass fiber strands wound into a package, is utilized as reinforcement in a variety of composite production techniques, such as weaving, pultrusion, and filament winding. Because of its adaptability and ability to create lightweight, high-performance composite structures, it has become the material of choice for industries that require strength, durability, and cost-effectiveness, solidifying its market leadership.
The optical fibers segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the optical fibers segment is predicted to witness the highest growth rate, driven by the quick global growth of data center networks, 5G infrastructure, and high-speed internet. Compared to conventional copper wiring, glass fibers in optical cables allow for faster and more dependable communication over long distances by transmitting data as light signals with little loss. The demand for optical fiber cables is rising sharply due to the increased need for cloud computing, broadband connectivity, and smart city infrastructure. Furthermore, propelling the market expansion for this sector are developments in fiber optic technology, such as bend-insensitive and ultra-low-loss fibers, which are expanding their use in industrial automation, defense, and telecommunications.
During the forecast period, the Asia-Pacific region is expected to hold the largest market share, fueled by growing construction, fast industrialization, and the flourishing production of electronics and automobiles in nations like China, India, and Japan. The area is a global center for glass fiber product manufacturing because of its large production facilities, inexpensive labor, and plentiful supply of raw materials. Moreover, Asia-Pacific's market dominance has been cemented by strong demand from end-use sectors such as consumer goods, infrastructure development, and wind energy, as well as government initiatives that support urbanization and renewable energy.
Over the forecast period, the Middle East & Africa region is anticipated to exhibit the highest CAGR, encouraged by the fast urbanization, expanding infrastructure, and rising investments in renewable energy projects, especially solar and wind. Increased use of lightweight, corrosion-resistant materials in the transportation, water management, and oil and gas sectors, along with growing construction activity in nations like the United Arab Emirates, Saudi Arabia, and South Africa, are fueling demand. Additionally, glass fiber applications are also being opened up by government-supported industrial modernization and diversification projects, setting up the area for the fastest growth in the world.
Key players in the market
Some of the key players in Glass Fiber Market include Asahi Fiber Glass Co. Ltd, Honeywell International Inc, Chongqing Polycomp International Corp. (CPIC), 3B Fibreglass, Johns Manville Inc, Mitsubishi Chemical Group Corporation, Lanxess AG, Jushi Group Co., Ltd., AGY Holding Corp., Montex Glass Fibre Industries Pvt. Ltd., Owens Corning, Taiwan Glass Ind. Corp., PPG Industries, Inc., Nippon Electric Glass Co. Ltd, Saint-Gobain Vetrotex Inc and Nitto Boseki Co. Ltd.
In June 2025, Honeywell announced a significant expansion of its licensing agreement with AFG Combustion and its subsidiary, Greens Combustion Ltd., to include Callidus flares. This expanded agreement not only doubles the range of greenhouse gas-reducing Callidus Ultra Blue Hydrogen process burners but also enhances global customer support.
In March 2025, Mitsubishi Chemical Group has concluded a license agreement with SNF Group regarding MCG Group's N-vinylformamide (NVF) manufacturing technology. NVF is a raw material of functional polymers. Using the manufacturing technology licensed under this agreement, SNF will start the commercial production of NVF at its new plant in Dunkirk, France as of this June.
In May 2024, Asahi India Glass (AIS) and INOX Air Products (INOXAP) have made a deal for 20 years to supply green hydrogen to AIS's new float glass facility in Soniyana, Rajasthan. This is going to be India's first plant producing green hydrogen for the float glass industry, promoting eco-friendly glass making. The plant will make about 190 tons of green hydrogen per year using electrolysis, and it's expected to start running by July 2024, powered by solar energy.
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.