PUBLISHER: The Business Research Company | PRODUCT CODE: 1809995
PUBLISHER: The Business Research Company | PRODUCT CODE: 1809995
Additive manufacturing for rocket engines refers to the technique of producing intricate engine components by layering metal powders or other materials using 3D printing technologies. This method allows for the fabrication of complex geometries that are challenging or unfeasible with traditional manufacturing processes. The primary goal is to reduce production time, cost, and weight while enhancing performance and design flexibility.
The main materials used in additive manufacturing for rocket engines include metals, polymers, ceramics, and others. Metals used in this process consist of powders or wires that are fused layer by layer to create engine parts. This technique employs various technologies such as selective laser melting, electron beam melting, fused deposition modeling, among others. It supports diverse applications including prototyping, production, and research and development (R&D), serving key end users like aerospace, defense, and others.
Note that the outlook for this market is being affected by rapid changes in trade relations and tariffs globally. The report will be updated prior to delivery to reflect the latest status, including revised forecasts and quantified impact analysis. The report's Recommendations and Conclusions sections will be updated to give strategies for entities dealing with the fast-moving international environment.
The sharp hike in U.S. tariffs and the associated trade disputes in spring 2025 are notably impacting the aerospace and defense sector by raising costs for titanium, carbon fiber composites, and avionics materials largely sourced from global suppliers. Defense contractors, locked into fixed-price government contracts, absorb these added costs, while commercial aerospace firms face airline pushback on higher aircraft prices. Delays in component shipments due to customs bottlenecks further disrupt tight production schedules for jets and satellites. The industry is responding by stockpiling critical materials, seeking waivers for defense-related imports, and collaborating with allied nations to diversify supply chain.
The additive manufacturing for rocket engines market research report is one of a series of new reports from The Business Research Company that provides additive manufacturing for rocket engines market statistics, including additive manufacturing for rocket engines industry global market size, regional shares, competitors with an additive manufacturing for rocket engines market share, detailed additive manufacturing for rocket engines market segments, market trends and opportunities, and any further data you may need to thrive in the additive manufacturing for rocket engines industry. This additive manufacturing for rocket engines market research report delivers a complete perspective of everything you need, with an in-depth analysis of the current and future scenario of the industry.
The additive manufacturing for rocket engines market size has grown rapidly in recent years. It will grow from $2.27 billion in 2024 to $2.69 billion in 2025 at a compound annual growth rate (CAGR) of 18.2%. The growth during the historic period can be attributed to rising demand for lightweight rocket components, expansion of the private space sector, government-funded aerospace additive manufacturing initiatives, increasing prototyping requirements for engine design iterations, and growing testing of additive-manufactured engines.
The additive manufacturing for rocket engines market size is expected to see rapid growth in the next few years. It will grow to $5.19 billion in 2029 at a compound annual growth rate (CAGR) of 17.9%. The growth during the forecast period can be attributed to the rising number of commercial space launches, increasing demand for reusability in rocket design, growing adoption of digital twin and simulation tools, heightened need for rapid manufacturing to enhance mission flexibility, and initiatives focused on sustainability and waste reduction. Key trends in the forecast period include the integration of artificial intelligence (AI) for design optimization, on-demand manufacturing models, use of electron beam and laser powder bed fusion technologies, expanded application of digital thread and simulations, and increased emphasis on customization and prototyping.
The rising demand for commercial space launch services is expected to drive the growth of the additive manufacturing for rocket engines market going forward. Commercial space launch services involve privately offered rocket launches that deliver satellites, cargo, or crew into space for various clients, providing cost-effective and reliable alternatives to government-operated launches. This demand is fueled by increased private sector investment in satellite-based communication and Earth observation, leading companies to plan more frequent missions. Additive manufacturing for rocket engines supports commercial space launch services by enabling the creation of lightweight, complex components, enhancing engine performance and fuel efficiency. It also reduces production time and costs, speeding up launch schedules and improving overall mission reliability. For example, in November 2024, the Federal Aviation Administration, a US federal agency, reported that commercial space operations grew by over 30% in 2023 to reach 148 launches, with projections indicating this number will more than double by 2028. Thus, the increasing demand for commercial space launch services is fueling the growth of the additive manufacturing for rocket engines market.
Leading companies in the additive manufacturing for rocket engines market are focusing on advancing technologies such as 3D printing additive manufacturing systems to improve production scalability, cut costs, and boost performance of rocket engine components. These 3D printing systems build parts layer by layer from digital designs, enabling complex, efficient, and rapid manufacturing. For instance, in June 2025, Innospace, a South Korea-based aerospace and defense company, launched an advanced in-house 3D printing division dedicated to manufacturing rocket engines and key components for its space launch vehicles using proprietary metal additive manufacturing technology. This initiative is expected to enhance competitiveness by enabling faster, more precise, and cost-effective production, potentially reducing manufacturing costs by up to 50% compared to traditional methods. The division manages all production stages, from design to quality verification, and has already produced 13 critical parts, including oxidizer pumps for the HANBIT launch vehicle.
In July 2023, L3Harris Technologies Inc., a US-based aerospace and defense technology firm, acquired Aerojet Rocketdyne Holdings Inc. for $4.7 billion. Through this acquisition, L3Harris aims to strengthen its propulsion capabilities by incorporating Aerojet Rocketdyne's expertise in rocket engines and energetics, bolstering its position in missile defense, hypersonics, and space propulsion. Aerojet Rocketdyne Holdings Inc., a US aerospace and defense company, utilizes additive manufacturing to enhance rocket engine performance, reduce costs, and speed up production.
Major players in the additive manufacturing for rocket engines market are Northrop Grumman Corporation, General Electric Company, L3Harris Technologies Inc., TRUMPF SE + Co. KG, Space Exploration Technologies Corp., Blue Origin Enterprises L.P., DMG MORI Aktiengesellschaft, United Launch Alliance LLC (ULA), RUAG Holding AG, Sierra Space Corporation, Rocket Lab USA Inc., Firefly Aerospace Inc., MT Aerospace AG, Velo3D Inc., Gilmour Space Technologies Pty Ltd., Ursa Major Technologies Inc., Orbex Ltd., Sintavia LLC, Vast Space Corp., EOS GmbH, Equatorial Space Systems Pty Ltd., and Skyrora Ltd.
North America was the largest region in the additive manufacturing for rocket engines market in 2024. Asia-Pacific is expected to be the fastest-growing region in the forecast period. The regions covered in additive manufacturing for rocket engines report are Asia-Pacific, Western Europe, Eastern Europe, North America, South America, Middle East and Africa.
The countries covered in the additive manufacturing for rocket engines market report are Australia, Brazil, China, France, Germany, India, Indonesia, Japan, Russia, South Korea, UK, USA, Canada, Italy, Spain.
The additive manufacturing for rocket engines market consists of sales of 3D-printed combustion chambers, 3D-printed injector heads, additively manufactured turbopump components, 3D-printed nozzles, lightweight structural components, and 3D-printed fuel manifolds. Values in this market are 'factory gate' values, that is the value of goods sold by the manufacturers or creators of the goods, whether to other entities (including downstream manufacturers, wholesalers, distributors and retailers) or directly to end customers. The value of goods in this market includes related services sold by the creators of the goods.
The market value is defined as the revenues that enterprises gain from the sale of goods and/or services within the specified market and geography through sales, grants, or donations in terms of the currency (in USD, unless otherwise specified).
The revenues for a specified geography are consumption values and are revenues generated by organizations in the specified geography within the market, irrespective of where they are produced. It does not include revenues from resales along the supply chain, either further along the supply chain or as part of other products.
Additive Manufacturing For Rocket Engines Global Market Report 2025 from The Business Research Company provides strategists, marketers and senior management with the critical information they need to assess the market.
This report focuses on additive manufacturing for rocket engines market which is experiencing strong growth. The report gives a guide to the trends which will be shaping the market over the next ten years and beyond.
Where is the largest and fastest growing market for additive manufacturing for rocket engines ? How does the market relate to the overall economy, demography and other similar markets? What forces will shape the market going forward, including technological disruption, regulatory shifts, and changing consumer preferences? The additive manufacturing for rocket engines market global report from the Business Research Company answers all these questions and many more.
The report covers market characteristics, size and growth, segmentation, regional and country breakdowns, competitive landscape, market shares, trends and strategies for this market. It traces the market's historic and forecast market growth by geography.
The forecasts are made after considering the major factors currently impacting the market. These include the technological advancements such as AI and automation, Russia-Ukraine war, trade tariffs (government-imposed import/export duties), elevated inflation and interest rates.