Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: TechSci Research | PRODUCT CODE: 1331189

Cover Image

PUBLISHER: TechSci Research | PRODUCT CODE: 1331189

Fullerene Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Type (C60, C70, C76, Others), By End User (Electrical and Electronics, Pharmaceuticals, Medical, Energy, and Others), By Region and Competition

PUBLISHED:
PAGES: 116 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4900
PDF and Excel (Multi-User License)
USD 5900
PDF and Excel (Custom Research License)
USD 8900

Add to Cart

We offer 8 hour analyst time for an additional research. Please contact us for the details.

Global Fullerene market is expected to grow impressively through 2028 due to the growing demand for natural and sustainable ingredients. In 2021, approximately 27% of respondents in the United States stated that their main reason for purchasing products that are environment-friendly or socially responsible is that they are better for the earth and the environment.

Fullerene is a fascinating class of carbon allotropes consisting of molecules composed entirely of carbon arranged in a closed cage-like structure with no internal bonds. These structures resemble soccer balls, consisting of 12 pentagons and varying numbers of hexagons, depending on the size of the molecule. Fullerene molecules come in various sizes and shapes, with the most common being C60, C70, and C84. The C60 molecule, also known as buckminsterfullerene or "buckyball," is the most famous of the fullerene molecules. It has a spherical shape and is composed of 60 carbon atoms arranged in a series of pentagons and hexagons. Fullerene molecules have a range of remarkable properties, making them useful in a wide range of applications. For example, they have excellent electronic properties, making them useful in electronics and nanotechnology. They also have unique optical properties, with the ability to absorb light in the ultraviolet and visible range, making them useful in solar cells and photovoltaic devices.

Fullerenes are also used in the development of new materials, particularly in the field of nanotechnology. They can be used as building blocks for nanomaterials, as well as templates for the synthesis of other materials. Fullerenes are also used in drug delivery systems, as their unique properties make them ideal for carrying drugs to specific cells or tissues. One of the most exciting applications of fullerenes is in the field of medicine. Research has shown that fullerene molecules have antioxidant properties, which suggests they can offset harmful free radicals in the body. This makes them potentially useful in the treatment of diseases such as cancer, Alzheimer's disease, and Parkinson's disease.

The fullerene market has been growing steadily over the past few years, driven by increased demand from various industries, including electronics, aerospace, and healthcare. Fullerene is a unique class of carbon allotropes with a wide range of properties that make them suitable for various applications.

Fullerenes are used in electronic devices as a replacement for silicon, as they have better electrical conductivity and can operate at higher temperatures. Fullerenes are also used as nanomaterials in semiconductors and solar cells, as their unique properties make them ideal for these applications. In the healthcare industry, fullerenes have been found to have antioxidant properties, making them useful for the treatment of various diseases. They are also used as drug delivery systems, as their unique properties allow them to be targeted to specific cells or tissues in the body. The demand for fullerenes in the healthcare industry is expected to grow significantly in the coming years, driven by the increasing prevalence of chronic diseases and the need for more effective treatments.

Increasing Demand from Healthcare Electronics is Driving Market Growth

The electronics industry is the largest consumer of fullerene, accounting for nearly 40% of the market share. Fullerenes are used in electronic devices as a replacement for silicon, as they have better electrical conductivity and can operate at higher temperatures. The growing demand for electronic devices, including smartphones, tablets, and laptops, is driving the demand for fullerene.

Fullerenes have been found to have antioxidant properties, making them useful in the treatment of various diseases. They are also used as drug delivery systems, as their unique properties allow them to be targeted to specific cells or tissues in the body. The demand for fullerenes in the healthcare industry is expected to grow significantly during the forecast period, driven by the increasing prevalence of chronic diseases and the need for more effective treatments.

Growing Demand from Emerging Economies is Driving Market Growth

The fullerene market is expanding in emerging economies, particularly in Asia-Pacific, driven by the growing electronics and healthcare industries. The increasing demand for electronic devices and the need for more effective treatments for chronic diseases are driving the demand for fullerene.

Ongoing research aimed at discovering new applications of fullerenes is driving the market growth. The development of fullerene-based materials with improved properties is also driving market growth. Companies are investing in research and development to improve production methods and reduce costs.

Fullerene-based materials have excellent mechanical properties, making them suitable for use in aircraft, satellites, and other space vehicles. The growing aerospace industry, particularly in Asia-Pacific, is driving the demand for fullerene.

Major Challenges Faced by Fullerene Market

One of the primary challenges facing the fullerene market is the lack of standardized testing and characterization methods. Fullerenes are complex molecules that come in many different sizes, shapes, and configurations, which makes it difficult to develop accurate and reliable testing methods. This lack of standardization has made it challenging for researchers and industry experts to compare different fullerenes and assess their properties accurately. As a result, many potential applications for fullerenes remain unexplored, and the market has not yet reached its full potential.

Another significant challenge facing the fullerene market is the high cost of production. Fullerenes are currently produced using a variety of methods, including laser vaporization, arc discharge, and chemical synthesis. However, all of these methods are relatively expensive and time consuming, which has reduced the availability of fullerenes and made them prohibitively expensive for many applications. As a result, the fullerene market has primarily been limited to niche applications such as research and development rather than large-scale commercial applications.

Moreover, the fullerene market faces significant regulatory hurdles. Fullerenes are a relatively new class of molecules, and their long-term effects on human health and the environment are still unknown. As a result, many regulatory agencies have been hesitant to approve their use in commercial applications, which has limited their adoption and slowed market growth. Furthermore, the lack of clear regulatory guidelines has made it challenging for companies to invest in fullerene research and development, which has further constrained the market's growth potential.

The fullerene market faces intense competition from other advanced materials, such as graphene and carbon nanotubes. These materials have many similar properties to fullerenes, and they are often more straightforward to produce and use. As a result, many companies have chosen to invest in these materials rather than fullerenes, which has limited the available resources and expertise for fullerene research and development.

Fullerenes face competition from other materials, such as carbon nanotubes and graphene, which have similar properties and are being developed for similar applications.

Recent Trends and Developments

  • Improved production methods: Companies have been investing in research and development to improve the production methods of fullerenes. One such development is the use of microwave-assisted heating for the synthesis of fullerenes, which is faster and more efficient than traditional methods. This has led to a reduction in production costs and increased availability of fullerenes.
  • New applications: Research has led to the discovery of new applications of fullerenes. For instance, fullerenes have been found to be effective in improving the performance of lithium-ion batteries, which are used in electric vehicles and renewable energy storage. Fullerenes have also been used in the development of biosensors and in cancer treatment.
  • Collaboration and partnerships: Companies have formed collaborations and partnerships to develop new applications of fullerenes. For example, a company partnered with a university to develop a fullerene-based material that can be used in electronic devices. Another company collaborated with a research institution to develop a fullerene-based drug delivery system.
  • Patent filings: Companies have filed patents for new applications of fullerenes. For example, a company filed a patent for the use of fullerenes in the treatment of Alzheimer's disease. Another company filed a patent for the use of fullerenes in the production of high-performance tires.

Market Segmentation

Global Fullerene Market is segmented based on type, end-user, and region. Based on type, the market is categorized into C60, C70, C76, and Others. Based on end-user, the market is further bifurcated into electrical and electronics, pharmaceuticals, medical, energy, and others. Based on region, the market is divided into North America, Europe, Asia Pacific, South America, Middle East & Africa.

Market Players

Nano-C, SES Research Inc, Mitsubishi Chemical Corporation, Merck KGaA, MTR Ltd., Nanostructured & Amorphous Materials, Inc., Xiamen Funano Co., Ltd., Tokyo Chemical Industry UK Ltd, Sisco Research Laboratories Pvt. Ltd., and Otto Chemie Pvt Ltd are some of the key players of the Global Fullerene Market.

Report Scope:

In this report, Global Fullerene market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Fullerene Market, By Type:

  • C60
  • C70
  • C76
  • Others

Fullerene Market, By End User:

  • Electrical and Electronics
  • Pharmaceuticals
  • Medical
  • Energy
  • Others

Fullerene Market, By Region:

  • North America
    • United States
    • Mexico
    • Canada
  • Europe
    • France
    • Germany
    • United Kingdom
    • Spain
    • Italy
  • Asia-Pacific
    • China
    • India
    • South Korea
    • Japan
    • Singapore
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive landscape

Company Profiles: Detailed analysis of the major companies present in Global Fullerene market.

Available Customizations:

With the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).
Product Code: 15118

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Fullerene Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value & Volume
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (C60, C70, C76, and Others)
    • 5.2.2. By End User (Electrical and Electronics, Pharmaceuticals, Medical, Energy, and Others)
    • 5.2.3. By Company (2022)
    • 5.2.4. By Region
  • 5.3. Product Market Map
  • 5.4. Pricing Analysis

6. North America Fullerene Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value & Volume
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By End User
    • 6.2.3. By Country
  • 6.3. Pricing Analysis
  • 6.4. North America: Country Analysis
    • 6.4.1. United States Fullerene Market Outlook
      • 6.4.1.1. Market Size & Forecast
        • 6.4.1.1.1. By Value & Volume
      • 6.4.1.2. Market Share & Forecast
        • 6.4.1.2.1. By Type
        • 6.4.1.2.2. By End User
    • 6.4.2. Mexico Fullerene Market Outlook
      • 6.4.2.1. Market Size & Forecast
        • 6.4.2.1.1. By Value & Volume
      • 6.4.2.2. Market Share & Forecast
        • 6.4.2.2.1. By Type
        • 6.4.2.2.2. By End User
    • 6.4.3. Canada Fullerene Market Outlook
      • 6.4.3.1. Market Size & Forecast
        • 6.4.3.1.1. By Value & Volume
      • 6.4.3.2. Market Share & Forecast
        • 6.4.3.2.1. By Type
        • 6.4.3.2.2. By End User

7. Europe Fullerene Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value & Volume
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By End User
    • 7.2.3. By Country
  • 7.3. Pricing Analysis
  • 7.4. Europe: Country Analysis
    • 7.4.1. France Fullerene Market Outlook
      • 7.4.1.1. Market Size & Forecast
        • 7.4.1.1.1. By Value & Volume
      • 7.4.1.2. Market Share & Forecast
        • 7.4.1.2.1. By Type
        • 7.4.1.2.2. By End User
    • 7.4.2. Germany Fullerene Market Outlook
      • 7.4.2.1. Market Size & Forecast
        • 7.4.2.1.1. By Value & Volume
      • 7.4.2.2. Market Share & Forecast
        • 7.4.2.2.1. By Type
        • 7.4.2.2.2. By End User
    • 7.4.3. United Kingdom Fullerene Market Outlook
      • 7.4.3.1. Market Size & Forecast
        • 7.4.3.1.1. By Value & Volume
      • 7.4.3.2. Market Share & Forecast
        • 7.4.3.2.1. By Type
        • 7.4.3.2.2. By End User
    • 7.4.4. Italy Fullerene Market Outlook
      • 7.4.4.1. Market Size & Forecast
        • 7.4.4.1.1. By Value & Volume
      • 7.4.4.2. Market Share & Forecast
        • 7.4.4.2.1. By Type
        • 7.4.4.2.2. By End User
    • 7.4.5. Spain Fullerene Market Outlook
      • 7.4.5.1. Market Size & Forecast
        • 7.4.5.1.1. By Value & Volume
      • 7.4.5.2. Market Share & Forecast
        • 7.4.5.2.1. By Type
        • 7.4.5.2.2. By End User

8. Asia-Pacific Fullerene Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value & Volume
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By End User
    • 8.2.3. By Country
  • 8.3. Pricing Analysis
  • 8.4. Asia-Pacific: Country Analysis
    • 8.4.1. China Fullerene Market Outlook
      • 8.4.1.1. Market Size & Forecast
        • 8.4.1.1.1. By Value & Volume
      • 8.4.1.2. Market Share & Forecast
        • 8.4.1.2.1. By Type
        • 8.4.1.2.2. By End User
    • 8.4.2. India Fullerene Market Outlook
      • 8.4.2.1. Market Size & Forecast
        • 8.4.2.1.1. By Value & Volume
      • 8.4.2.2. Market Share & Forecast
        • 8.4.2.2.1. By Type
        • 8.4.2.2.2. By End User
    • 8.4.3. South Korea Fullerene Market Outlook
      • 8.4.3.1. Market Size & Forecast
        • 8.4.3.1.1. By Value & Volume
      • 8.4.3.2. Market Share & Forecast
        • 8.4.3.2.1. By Type
        • 8.4.3.2.2. By End User
    • 8.4.4. Japan Fullerene Market Outlook
      • 8.4.4.1. Market Size & Forecast
        • 8.4.4.1.1. By Value & Volume
      • 8.4.4.2. Market Share & Forecast
        • 8.4.4.2.1. By Type
        • 8.4.4.2.2. By End User
    • 8.4.5. Australia Fullerene Market Outlook
      • 8.4.5.1. Market Size & Forecast
        • 8.4.5.1.1. By Value & Volume
      • 8.4.5.2. Market Share & Forecast
        • 8.4.5.2.1. By Type
        • 8.4.5.2.2. By End User

9. South America Fullerene Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value & Volume
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By End User
    • 9.2.3. By Country
  • 9.3. Pricing Analysis
  • 9.4. South America: Country Analysis
    • 9.4.1. Brazil Fullerene Market Outlook
      • 9.4.1.1. Market Size & Forecast
        • 9.4.1.1.1. By Value & Volume
      • 9.4.1.2. Market Share & Forecast
        • 9.4.1.2.1. By Type
        • 9.4.1.2.2. By End User
    • 9.4.2. Argentina Fullerene Market Outlook
      • 9.4.2.1. Market Size & Forecast
        • 9.4.2.1.1. By Value & Volume
      • 9.4.2.2. Market Share & Forecast
        • 9.4.2.2.1. By Type
        • 9.4.2.2.2. By End User
    • 9.4.3. Colombia Fullerene Market Outlook
      • 9.4.3.1. Market Size & Forecast
        • 9.4.3.1.1. By Value & Volume
      • 9.4.3.2. Market Share & Forecast
        • 9.4.3.2.1. By Type
        • 9.4.3.2.2. By End User

10. Middle East and Africa Fullerene Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value & Volume
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By End User
    • 10.2.3. By Country
  • 10.3. Pricing Analysis
  • 10.4. MEA: Country Analysis
    • 10.4.1. South Africa Fullerene Market Outlook
      • 10.4.1.1. Market Size & Forecast
        • 10.4.1.1.1. By Value & Volume
      • 10.4.1.2. Market Share & Forecast
        • 10.4.1.2.1. By Type
        • 10.4.1.2.2. By End User
    • 10.4.2. Saudi Arabia Fullerene Market Outlook
      • 10.4.2.1. Market Size & Forecast
        • 10.4.2.1.1. By Value & Volume
      • 10.4.2.2. Market Share & Forecast
        • 10.4.2.2.1. By Type
        • 10.4.2.2.2. By End User
    • 10.4.3. UAE Fullerene Market Outlook
      • 10.4.3.1. Market Size & Forecast
        • 10.4.3.1.1. By Value & Volume
      • 10.4.3.2. Market Share & Forecast
        • 10.4.3.2.1. By Type
        • 10.4.3.2.2. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition
  • 12.2. Product Development
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Business Overview
  • 14.2. Company Snapshot
  • 14.3. Products & Services
  • 14.4. Financials (As Reported)
  • 14.5. Recent Developments
    • 14.5.1. Nano-C
    • 14.5.2. SES Research Inc.
    • 14.5.3. Mitsubishi Chemical Corporation
    • 14.5.4. Merck KGaA
    • 14.5.5. MTR Ltd.
    • 14.5.6. Nanostructured & Amorphous Materials, Inc.
    • 14.5.7. Xiamen Funano Co., Ltd.
    • 14.5.8. Tokyo Chemical Industry UK Ltd.
    • 14.5.9. Sisco Research Laboratories Pvt. Ltd.
    • 14.5.10. Otto Chemie Pvt Ltd

15. Strategic Recommendations

16. About Us & Disclaimer

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!