Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: TechSci Research | PRODUCT CODE: 1779070

Cover Image

PUBLISHER: TechSci Research | PRODUCT CODE: 1779070

Steam Generation Water Pump Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application, By Region & Competition, 2020-2030F

PUBLISHED:
PAGES: 188 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4500
PDF and Excel (Multi-User License)
USD 5500
PDF and Excel (Custom Research License)
USD 8000

Add to Cart

We offer 8 hour analyst time for an additional research. Please contact us for the details.

The Global Steam Generation Water Pump Market was valued at USD 3.7 billion in 2024 and is expected to reach USD 4.6 billion by 2030 with a CAGR of 3.4% through 2030. The global Steam Generation Water Pump Market is primarily driven by the growing demand for reliable power generation and the expansion of thermal power plants across both developed and emerging economies. As global electricity consumption continues to rise-especially in Asia-Pacific-there is increased investment in coal, gas, and nuclear power plants, all of which require efficient boiler feedwater pumps to sustain steam cycles. Rapid urbanization and industrialization in countries like China, India, and Indonesia are fueling the construction of large-scale energy and infrastructure projects, further boosting demand. Additionally, strict environmental regulations and energy efficiency mandates are pushing industries to adopt high-efficiency, low-emission pump systems.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 3.7 Billion
Market Size 2030USD 4.6 Billion
CAGR 2025-20303.4%
Fastest Growing SegmentBoiler Feed Pump
Largest MarketNorth America

Technological advancements such as smart pumps with variable speed drives, IoT-based monitoring, and predictive maintenance capabilities are also gaining popularity, improving operational efficiency and reducing energy costs. The market is also influenced by the increasing use of durable, corrosion-resistant materials to enhance pump life and performance in high-pressure, high-temperature environments. Furthermore, government initiatives promoting sustainable energy and water management are accelerating pump adoption in utilities and industrial applications. As a result, the market is set to grow steadily, driven by energy security needs, efficiency goals, and infrastructure modernization efforts worldwide.

Key Market Drivers

Rising Global Energy Demand and Expansion of Thermal Power Infrastructure

One of the most significant drivers of the global steam generation water pump market is the rising demand for electricity and the ongoing expansion of thermal power generation infrastructure. As industrialization and urbanization continue to accelerate-particularly in developing economies such as China, India, Vietnam, and Indonesia-the need for stable and large-scale power generation systems has increased dramatically. Steam-based thermal power plants, including coal, gas, and nuclear facilities, rely heavily on high-pressure boiler feedwater pumps to supply water to boilers and maintain a consistent steam generation process. These pumps are critical in ensuring the safety, efficiency, and output of the power plant.

According to the International Energy Agency (IEA), global electricity demand rose by around 2.5% in 2023 and is projected to continue growing, particularly in regions like Asia-Pacific and the Middle East. To meet this demand, governments and private investors are pouring resources into building and upgrading power infrastructure. China alone approved over 200 GW of coal-fired power projects in 2022-23, and India has laid out plans for massive thermal capacity additions. Each new plant or retrofit demands multiple steam generation water pumps designed to withstand high temperatures and pressures.

Moreover, aging infrastructure in North America and Europe is undergoing modernization, which also requires replacement or upgrading of existing pump systems. The use of high-capacity, energy-efficient pumps helps reduce operational costs and comply with emissions regulations. With the global shift toward energy efficiency, even fossil-fuel-based plants are optimizing performance through better pump technology. As a result, the global demand for advanced, durable, and energy-efficient steam generation water pumps is rising steadily, driven by both greenfield installations and brownfield upgrades across diverse geographies. Global energy demand is projected to increase by over 25% by 2040, driven by population growth and industrialization, especially in emerging economies. The world's population is expected to reach 9.7 billion by 2050, significantly increasing energy consumption for transportation, heating, cooling, and manufacturing. Electricity demand alone is anticipated to grow at a rate of 2% to 3% per year, outpacing overall energy demand growth. Urbanization trends suggest that by 2050, nearly 70% of the global population will live in cities, placing greater strain on energy infrastructure and increasing electricity usage. Industrial activity continues to be a major driver, accounting for approximately 30% of global energy consumption, with this share expected to rise as global manufacturing expands. Renewable energy is growing rapidly, but fossil fuels still supply over 70% of the world's total energy needs as of the mid-2020s.

Key Market Challenges

High Initial Costs and Complex Installation Requirements

One of the primary challenges facing the global steam generation water pump market is the high capital expenditure required for pump procurement, installation, and commissioning. Boiler feedwater pumps used in steam generation must operate under extremely high pressures and temperatures, often exceeding 100 bar and 200°C. As a result, these pumps must be constructed with precision engineering and high-grade materials such as stainless steel, duplex alloys, or composite metals. This drives up the production costs significantly, making them far more expensive than conventional industrial pumps.

In addition to the high manufacturing costs, the installation process for these systems is complex and labor-intensive. Proper alignment, foundation preparation, vibration analysis, and pipework integration require highly skilled technicians and precision equipment. In new power plant construction, improper installation or sizing of the pump system can lead to operational inefficiencies, cavitation, or even catastrophic failure. These factors make pump setup a critical part of the overall plant design, often causing delays or budget overruns.

For small-scale thermal plants or facilities operating under tight budgets-particularly in developing regions-the steep upfront cost becomes a major barrier to adoption. Many plant operators may opt for cheaper, less reliable alternatives, compromising long-term performance and safety. Furthermore, any upgrades or retrofits to existing infrastructure often require customized solutions, adding to engineering complexity and costs.

While energy-efficient and smart pump technologies offer long-term savings, the high initial investment and long payback period deter many buyers. Financial constraints, lack of government subsidies, and limited access to low-interest industrial loans can further restrict market growth. To overcome this barrier, pump manufacturers may need to introduce flexible financing models, leasing options, or government-backed incentives, particularly in emerging economies where infrastructure development is critical but budget resources are limited.

Key Market Trends

Growing Adoption of Energy-Efficient and Variable Speed Pump Technologies

One of the most prominent trends reshaping the global steam generation water pump market is the increasing shift toward energy-efficient pump systems, particularly those equipped with Variable Frequency Drives (VFDs) or Variable Speed Drives (VSDs). These technologies enable pumps to automatically adjust motor speed and power consumption based on system demand, rather than operating at a fixed speed. In steam generation processes-where feedwater demand fluctuates depending on boiler load-such adaptability leads to significant energy savings, often between 30-50% compared to traditional constant-speed pumps.

Energy consumption can account for over 40% of the total cost of ownership in water pump systems, making efficiency gains a top priority. With rising electricity costs and stricter global energy-efficiency regulations, especially in Europe and North America, industries are increasingly investing in high-efficiency pumps that reduce both operating costs and carbon emissions. In Asia-Pacific, emerging markets such as India and Southeast Asia are also catching up due to industrial modernization and energy conservation mandates.

Additionally, pump manufacturers are integrating advanced hydraulic designs, low-friction bearings, and improved impeller geometries to enhance overall performance. Governments and environmental agencies are pushing efficiency labeling and energy performance standards, further driving this trend. For instance, the U.S. Department of Energy (DOE) and the European Union's Ecodesign Directive have both mandated minimum efficiency standards for industrial pump systems.

To gain competitive advantage, companies like Grundfos, KSB, and Flowserve are launching intelligent pump packages that combine VFDs, smart sensors, and cloud-based performance monitoring. These energy-optimized systems offer real-time analytics and automated adjustments to ensure pumps operate at peak efficiency under variable loads. As industries aim to lower emissions and operating costs, the demand for energy-efficient and smart pump technologies is expected to surge globally.

Key Market Players

  • Flowserve Corporation
  • KSB SE & Co. KGaA
  • Sulzer Ltd
  • Ebara Corporation
  • Grundfos Holding A/S
  • Wilo SE
  • Xylem Inc.
  • ITT Inc.

Report Scope:

In this report, the Global Steam Generation Water Pump Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Steam Generation Water Pump Market, By Type:

  • Boiler Feed Pump
  • Circulation Pumps
  • Steam Condensate Pumps
  • Others

Steam Generation Water Pump Market, By Application:

  • Power Generation
  • Industrial Processes
  • Chemical Processing
  • Food & Beverage Processing
  • Others

Steam Generation Water Pump Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
  • South America
    • Brazil
    • Colombia
    • Argentina
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Steam Generation Water Pump Market.

Available Customizations:

Global Steam Generation Water Pump Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).
Product Code: 30145

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Steam Generation Water Pump Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Boiler Feed Pump, Circulation Pumps, Steam Condensate Pumps, Others)
    • 5.2.2. By Application (Power Generation, Industrial Processes, Chemical Processing, Food & Beverage Processing, Others)
    • 5.2.3. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Steam Generation Water Pump Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Steam Generation Water Pump Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
    • 6.3.2. Canada Steam Generation Water Pump Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
    • 6.3.3. Mexico Steam Generation Water Pump Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application

7. Europe Steam Generation Water Pump Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Steam Generation Water Pump Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
    • 7.3.2. France Steam Generation Water Pump Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
    • 7.3.3. United Kingdom Steam Generation Water Pump Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
    • 7.3.4. Italy Steam Generation Water Pump Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
    • 7.3.5. Spain Steam Generation Water Pump Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application

8. Asia Pacific Steam Generation Water Pump Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Steam Generation Water Pump Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
    • 8.3.2. India Steam Generation Water Pump Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
    • 8.3.3. Japan Steam Generation Water Pump Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application
    • 8.3.4. South Korea Steam Generation Water Pump Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Application
    • 8.3.5. Australia Steam Generation Water Pump Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Application

9. Middle East & Africa Steam Generation Water Pump Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Steam Generation Water Pump Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
    • 9.3.2. UAE Steam Generation Water Pump Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
    • 9.3.3. South Africa Steam Generation Water Pump Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application

10. South America Steam Generation Water Pump Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Steam Generation Water Pump Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
    • 10.3.2. Colombia Steam Generation Water Pump Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
    • 10.3.3. Argentina Steam Generation Water Pump Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends and Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Flowserve Corporation
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services Offered
  • 13.2. KSB SE & Co. KGaA
  • 13.3. Sulzer Ltd
  • 13.4. Ebara Corporation
  • 13.5. Grundfos Holding A/S
  • 13.6. Wilo SE
  • 13.7. Xylem Inc.
  • 13.8. ITT Inc.

14. Strategic Recommendations

15. About Us & Disclaimer

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!