Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: TechSci Research | PRODUCT CODE: 1901692

Cover Image

PUBLISHER: TechSci Research | PRODUCT CODE: 1901692

Hybrid Additive Manufacturing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Materials By Processes, By Region & Competition, 2021-2031F

PUBLISHED:
PAGES: 185 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4500
PDF and Excel (Multi-User License)
USD 5500
PDF and Excel (Custom Research License)
USD 8000

Add to Cart

We offer 8 hour analyst time for an additional research. Please contact us for the details.

The Global Hybrid Additive Manufacturing Market will grow from USD 121.78 Billion in 2025 to USD 297.63 Billion by 2031 at a 16.06% CAGR. Hybrid additive manufacturing integrates additive material deposition and subtractive machining capabilities within a single machine tool environment to produce finished components.

Market Overview
Forecast Period2027-2031
Market Size 2025USD 121.78 Billion
Market Size 2031USD 297.63 Billion
CAGR 2026-203116.06%
Fastest Growing SegmentLaser Metal Deposition (LMD)
Largest MarketNorth America

Key Market Drivers

The rising demand for repair and remanufacturing of high-value components acts as a primary catalyst for the market, particularly within the defense and heavy industry sectors. By enabling the restoration of worn parts such as turbine blades, molds, and dies through direct energy deposition followed by precision machining, hybrid systems extend component lifecycles and significantly reduce replacement costs. This capability is increasingly prioritized by national defense strategies to ensure supply chain resilience and operational readiness.

Key Market Challenges

The high initial capital investment required for hybrid additive manufacturing systems constitutes a formidable barrier that directly restricts market expansion. Acquiring these complex machines involves substantial upfront expenditure, often exceeding the budgets of small and medium-sized enterprises (SMEs) which form a large portion of the industrial base. This financial burden is compounded by the need for specialized CAM software and the associated costs of training personnel to navigate the steep learning curve.

Key Market Trends

The adoption of in-situ metrology for closed-loop quality control is emerging as a critical trend, fundamentally shifting verification from post-production assessments to real-time process monitoring. In hybrid systems, where additive and subtractive operations occur sequentially, the ability to detect and correct defects during the deposition phase is vital for ensuring the structural integrity of complex aerospace and defense components. This capability significantly mitigates the risk of burying flaws under subsequent layers, thereby reducing scrap rates and accelerating the certification of safety-critical parts.

Key Market Players

  • DMG MORI Co., Ltd.
  • Mazak Corporation
  • Stratasys Ltd
  • Matsuura Machinery Corporation
  • Voxeljet AG
  • SLM Solutions Group AG
  • Optomec Inc
  • EOS GmbH
  • Renishaw plc
  • 3D Systems Corporation

Report Scope:

In this report, the Global Hybrid Additive Manufacturing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Hybrid Additive Manufacturing Market, By Processes:

  • Directed Energy Deposition (DED)
  • Laser Metal Deposition (LMD)
  • Blow Powder Deposition (BPD)

Hybrid Additive Manufacturing Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Hybrid Additive Manufacturing Market.

Available Customizations:

Global Hybrid Additive Manufacturing Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).
Product Code: 17178

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Hybrid Additive Manufacturing Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Processes (Directed Energy Deposition (DED), Laser Metal Deposition (LMD), Blow Powder Deposition (BPD))
    • 5.2.2. By Region
    • 5.2.3. By Company (2025)
  • 5.3. Market Map

6. North America Hybrid Additive Manufacturing Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Processes
    • 6.2.2. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Hybrid Additive Manufacturing Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Processes
    • 6.3.2. Canada Hybrid Additive Manufacturing Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Processes
    • 6.3.3. Mexico Hybrid Additive Manufacturing Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Processes

7. Europe Hybrid Additive Manufacturing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Processes
    • 7.2.2. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Hybrid Additive Manufacturing Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Processes
    • 7.3.2. France Hybrid Additive Manufacturing Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Processes
    • 7.3.3. United Kingdom Hybrid Additive Manufacturing Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Processes
    • 7.3.4. Italy Hybrid Additive Manufacturing Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Processes
    • 7.3.5. Spain Hybrid Additive Manufacturing Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Processes

8. Asia Pacific Hybrid Additive Manufacturing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Processes
    • 8.2.2. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Hybrid Additive Manufacturing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Processes
    • 8.3.2. India Hybrid Additive Manufacturing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Processes
    • 8.3.3. Japan Hybrid Additive Manufacturing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Processes
    • 8.3.4. South Korea Hybrid Additive Manufacturing Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Processes
    • 8.3.5. Australia Hybrid Additive Manufacturing Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Processes

9. Middle East & Africa Hybrid Additive Manufacturing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Processes
    • 9.2.2. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Hybrid Additive Manufacturing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Processes
    • 9.3.2. UAE Hybrid Additive Manufacturing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Processes
    • 9.3.3. South Africa Hybrid Additive Manufacturing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Processes

10. South America Hybrid Additive Manufacturing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Processes
    • 10.2.2. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Hybrid Additive Manufacturing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Processes
    • 10.3.2. Colombia Hybrid Additive Manufacturing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Processes
    • 10.3.3. Argentina Hybrid Additive Manufacturing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Processes

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Global Hybrid Additive Manufacturing Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. DMG MORI Co., Ltd.
    • 15.1.1. Business Overview
    • 15.1.2. Products & Services
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel
    • 15.1.5. SWOT Analysis
  • 15.2. Mazak Corporation
  • 15.3. Stratasys Ltd
  • 15.4. Matsuura Machinery Corporation
  • 15.5. Voxeljet AG
  • 15.6. SLM Solutions Group AG
  • 15.7. Optomec Inc
  • 15.8. EOS GmbH
  • 15.9. Renishaw plc
  • 15.10. 3D Systems Corporation

16. Strategic Recommendations

17. About Us & Disclaimer

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!