Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: TechSci Research | PRODUCT CODE: 1934997

Cover Image

PUBLISHER: TechSci Research | PRODUCT CODE: 1934997

Automated Machine Learning Solution Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Offering, By Deployment, By Automation Type, By Enterprise Size, By End-Users, By Region & Competition, 2021-2031F

PUBLISHED:
PAGES: 181 Pages
DELIVERY TIME: 2-3 business days
SELECT AN OPTION
Unprintable PDF (Single User License)
USD 4500
PDF and Excel (Multi-User License)
USD 5500
PDF and Excel (Custom Research License)
USD 8000

Add to Cart

We offer 8 hour analyst time for an additional research. Please contact us for the details.

The Global Automated Machine Learning Solution Market is projected to experience substantial expansion, rising from a valuation of USD 3.25 Billion in 2025 to USD 27.19 Billion by 2031, achieving a CAGR of 42.48%. Automated Machine Learning (AutoML) solutions function as comprehensive software platforms that automate the entire machine learning lifecycle, handling tasks ranging from data preprocessing and feature engineering to model selection and hyperparameter tuning. This market growth is largely fueled by the democratization of data science, which enables business professionals with limited coding skills to build predictive models, and by the urgent necessity to optimize resources amidst a critical shortage of skilled data scientists. According to CompTIA, 43% of channel companies intended to sell AI-related software and services in 2024, indicating a major supply-side shift to satisfy the growing organizational demand for accessible and scalable artificial intelligence tools.

Market Overview
Forecast Period2027-2031
Market Size 2025USD 3.25 Billion
Market Size 2031USD 27.19 Billion
CAGR 2026-203142.48%
Fastest Growing SegmentManufacturing
Largest MarketNorth America

Despite this positive trajectory, a significant barrier to universal market adoption is the lack of transparency and explainability in automated models, commonly known as the "black box" problem. In highly regulated industries like finance and healthcare, the inability to interpret the logic behind specific model predictions creates compliance risks and undermines stakeholder confidence. This opacity, coupled with strict data privacy mandates and the difficulty of integrating autonomous systems into existing legacy infrastructures, continues to cause friction for risk-averse enterprises that are hesitant to deploy these solutions at scale.

Market Driver

The severe shortage of skilled AI professionals acts as a primary catalyst for the widespread adoption of automated machine learning solutions. As organizations aim to embed artificial intelligence into their core operations, the scarcity of qualified data scientists creates a significant bottleneck that necessitates the use of platforms capable of lowering technical barriers. By automating complex processes such as feature selection and hyperparameter tuning, these tools enable enterprises to bridge the talent gap and maintain their competitive edge without requiring large teams of specialized experts. According to IBM's August 2025 report on AI adoption challenges, 42% of respondents identified inadequate expertise as a major obstacle preventing organizations from effectively scaling their artificial intelligence initiatives.

Simultaneously, the drive for operational efficiency and accelerated model development cycles propels the implementation of these autonomous systems. In a business environment where speed to market is essential, automated solutions drastically reduce the time needed to transform raw data into actionable insights by eliminating repetitive manual coding tasks. This streamlined workflow allows technical teams to focus on high-level strategy rather than routine maintenance, thereby boosting overall productivity and ensuring rapid deployment. Microsoft's May 2025 Work Trend Index Annual Report noted that 90% of AI power users find that using AI makes their workload more manageable, underscoring the efficiency gains achieved through intelligent automation. Furthermore, the strategic importance of these technologies is evidenced by substantial financial backing; Stanford HAI's April 2025 AI Index Report indicated that corporate AI investment reached $252.3 billion in 2024.

Market Challenge

The "black box" problem, characterized by a lack of transparency and explainability in automated models, serves as a significant restraint on the Global Automated Machine Learning Solution Market. In highly regulated sectors such as finance and healthcare, the opacity of algorithmic decision-making conflicts directly with the need for accountability and interpretability. Stakeholders must be able to validate how a model derives its predictions to satisfy stringent legal mandates, yet the autonomous nature of many AutoML platforms often obscures this logic. This inability to audit decision pathways erodes trust among risk-averse enterprises, causing them to delay or limit the deployment of these tools in mission-critical operations where errors could lead to severe reputational and financial damage.

This friction is exacerbated by a widespread lack of organizational readiness to effectively govern these complex systems. According to ISACA, only 15% of organizations had established formal AI policies in 2024, highlighting a critical governance gap that leaves many businesses unprepared to manage the compliance risks associated with opaque automated technologies. Without robust frameworks to ensure the ethical and transparent use of these models, enterprises remain hesitant to integrate AutoML solutions into established legacy infrastructures. Consequently, this deficiency in governance slows market penetration in high-value industries that prioritize regulatory adherence over operational speed.

Market Trends

The integration of Generative AI for lifecycle automation is redefining the Global Automated Machine Learning Solution Market by shifting the focus from simple hyperparameter tuning to comprehensive code and data synthesis. Advanced generative models are now capable of autonomously authoring deployment scripts, generating synthetic training data, and creating technical documentation, acting as intelligent operational partners rather than passive tools. This evolution accelerates development timelines and mitigates the skills shortage by handling complex engineering tasks that previously required manual intervention. According to the Google Cloud 2024 DORA Report published in November 2024, 76% of developers reported using AI-powered tools daily, reflecting the pervasive adoption of these automated capabilities to streamline core software and model development workflows.

Concurrently, the market is merging with MLOps frameworks to address the operational challenges created by the mass production of automated models. As organizations leverage AutoML to generate algorithms at an unprecedented pace, robust continuous management systems are becoming essential to monitor, govern, and retrain these assets effectively in dynamic production environments. This trend emphasizes the shift from model creation to sustainable lifecycle management, ensuring that the volume of deployed solutions does not overwhelm legacy infrastructure. According to Databricks' June 2024 State of Data + AI Report, the number of machine learning models managed by organizations grew by 11 times year-over-year, highlighting the critical need for scalable operational architectures to support this explosive growth in automated model deployment.

Key Market Players

  • Datarobot Inc.
  • Amazon Web Services Inc.
  • dotData Inc.
  • International Business Machines Corporation
  • Dataiku
  • EdgeVerve Systems Limited
  • Big Squid Inc.
  • SAS Institute Inc.
  • Microsoft Corporation
  • Determined.ai Inc.

Report Scope

In this report, the Global Automated Machine Learning Solution Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automated Machine Learning Solution Market, By Offering

  • Platform
  • Service

Automated Machine Learning Solution Market, By Deployment

  • On-Premise
  • Cloud

Automated Machine Learning Solution Market, By Automation Type

  • Data Processing
  • Feature Engineering
  • Modeling
  • Visualization

Automated Machine Learning Solution Market, By Enterprise Size

  • Large Enterprises
  • SMEs

Automated Machine Learning Solution Market, By End-Users

  • BFSI
  • Retail and E-Commerce
  • Healthcare
  • Manufacturing

Automated Machine Learning Solution Market, By Region

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automated Machine Learning Solution Market.

Available Customizations:

Global Automated Machine Learning Solution Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).
Product Code: 15569

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Automated Machine Learning Solution Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Offering (Platform, Service)
    • 5.2.2. By Deployment (On-Premise, Cloud)
    • 5.2.3. By Automation Type (Data Processing, Feature Engineering, Modeling, Visualization)
    • 5.2.4. By Enterprise Size (Large Enterprises, SMEs)
    • 5.2.5. By End-Users (BFSI, Retail and E-Commerce, Healthcare, Manufacturing)
    • 5.2.6. By Region
    • 5.2.7. By Company (2025)
  • 5.3. Market Map

6. North America Automated Machine Learning Solution Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Offering
    • 6.2.2. By Deployment
    • 6.2.3. By Automation Type
    • 6.2.4. By Enterprise Size
    • 6.2.5. By End-Users
    • 6.2.6. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Automated Machine Learning Solution Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Offering
        • 6.3.1.2.2. By Deployment
        • 6.3.1.2.3. By Automation Type
        • 6.3.1.2.4. By Enterprise Size
        • 6.3.1.2.5. By End-Users
    • 6.3.2. Canada Automated Machine Learning Solution Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Offering
        • 6.3.2.2.2. By Deployment
        • 6.3.2.2.3. By Automation Type
        • 6.3.2.2.4. By Enterprise Size
        • 6.3.2.2.5. By End-Users
    • 6.3.3. Mexico Automated Machine Learning Solution Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Offering
        • 6.3.3.2.2. By Deployment
        • 6.3.3.2.3. By Automation Type
        • 6.3.3.2.4. By Enterprise Size
        • 6.3.3.2.5. By End-Users

7. Europe Automated Machine Learning Solution Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Offering
    • 7.2.2. By Deployment
    • 7.2.3. By Automation Type
    • 7.2.4. By Enterprise Size
    • 7.2.5. By End-Users
    • 7.2.6. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Automated Machine Learning Solution Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Offering
        • 7.3.1.2.2. By Deployment
        • 7.3.1.2.3. By Automation Type
        • 7.3.1.2.4. By Enterprise Size
        • 7.3.1.2.5. By End-Users
    • 7.3.2. France Automated Machine Learning Solution Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Offering
        • 7.3.2.2.2. By Deployment
        • 7.3.2.2.3. By Automation Type
        • 7.3.2.2.4. By Enterprise Size
        • 7.3.2.2.5. By End-Users
    • 7.3.3. United Kingdom Automated Machine Learning Solution Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Offering
        • 7.3.3.2.2. By Deployment
        • 7.3.3.2.3. By Automation Type
        • 7.3.3.2.4. By Enterprise Size
        • 7.3.3.2.5. By End-Users
    • 7.3.4. Italy Automated Machine Learning Solution Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Offering
        • 7.3.4.2.2. By Deployment
        • 7.3.4.2.3. By Automation Type
        • 7.3.4.2.4. By Enterprise Size
        • 7.3.4.2.5. By End-Users
    • 7.3.5. Spain Automated Machine Learning Solution Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Offering
        • 7.3.5.2.2. By Deployment
        • 7.3.5.2.3. By Automation Type
        • 7.3.5.2.4. By Enterprise Size
        • 7.3.5.2.5. By End-Users

8. Asia Pacific Automated Machine Learning Solution Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Offering
    • 8.2.2. By Deployment
    • 8.2.3. By Automation Type
    • 8.2.4. By Enterprise Size
    • 8.2.5. By End-Users
    • 8.2.6. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Automated Machine Learning Solution Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Offering
        • 8.3.1.2.2. By Deployment
        • 8.3.1.2.3. By Automation Type
        • 8.3.1.2.4. By Enterprise Size
        • 8.3.1.2.5. By End-Users
    • 8.3.2. India Automated Machine Learning Solution Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Offering
        • 8.3.2.2.2. By Deployment
        • 8.3.2.2.3. By Automation Type
        • 8.3.2.2.4. By Enterprise Size
        • 8.3.2.2.5. By End-Users
    • 8.3.3. Japan Automated Machine Learning Solution Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Offering
        • 8.3.3.2.2. By Deployment
        • 8.3.3.2.3. By Automation Type
        • 8.3.3.2.4. By Enterprise Size
        • 8.3.3.2.5. By End-Users
    • 8.3.4. South Korea Automated Machine Learning Solution Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Offering
        • 8.3.4.2.2. By Deployment
        • 8.3.4.2.3. By Automation Type
        • 8.3.4.2.4. By Enterprise Size
        • 8.3.4.2.5. By End-Users
    • 8.3.5. Australia Automated Machine Learning Solution Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Offering
        • 8.3.5.2.2. By Deployment
        • 8.3.5.2.3. By Automation Type
        • 8.3.5.2.4. By Enterprise Size
        • 8.3.5.2.5. By End-Users

9. Middle East & Africa Automated Machine Learning Solution Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Offering
    • 9.2.2. By Deployment
    • 9.2.3. By Automation Type
    • 9.2.4. By Enterprise Size
    • 9.2.5. By End-Users
    • 9.2.6. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Automated Machine Learning Solution Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Offering
        • 9.3.1.2.2. By Deployment
        • 9.3.1.2.3. By Automation Type
        • 9.3.1.2.4. By Enterprise Size
        • 9.3.1.2.5. By End-Users
    • 9.3.2. UAE Automated Machine Learning Solution Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Offering
        • 9.3.2.2.2. By Deployment
        • 9.3.2.2.3. By Automation Type
        • 9.3.2.2.4. By Enterprise Size
        • 9.3.2.2.5. By End-Users
    • 9.3.3. South Africa Automated Machine Learning Solution Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Offering
        • 9.3.3.2.2. By Deployment
        • 9.3.3.2.3. By Automation Type
        • 9.3.3.2.4. By Enterprise Size
        • 9.3.3.2.5. By End-Users

10. South America Automated Machine Learning Solution Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Offering
    • 10.2.2. By Deployment
    • 10.2.3. By Automation Type
    • 10.2.4. By Enterprise Size
    • 10.2.5. By End-Users
    • 10.2.6. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Automated Machine Learning Solution Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Offering
        • 10.3.1.2.2. By Deployment
        • 10.3.1.2.3. By Automation Type
        • 10.3.1.2.4. By Enterprise Size
        • 10.3.1.2.5. By End-Users
    • 10.3.2. Colombia Automated Machine Learning Solution Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Offering
        • 10.3.2.2.2. By Deployment
        • 10.3.2.2.3. By Automation Type
        • 10.3.2.2.4. By Enterprise Size
        • 10.3.2.2.5. By End-Users
    • 10.3.3. Argentina Automated Machine Learning Solution Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Offering
        • 10.3.3.2.2. By Deployment
        • 10.3.3.2.3. By Automation Type
        • 10.3.3.2.4. By Enterprise Size
        • 10.3.3.2.5. By End-Users

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Global Automated Machine Learning Solution Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. Datarobot Inc.
    • 15.1.1. Business Overview
    • 15.1.2. Products & Services
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel
    • 15.1.5. SWOT Analysis
  • 15.2. Amazon Web Services Inc.
  • 15.3. dotData Inc.
  • 15.4. International Business Machines Corporation
  • 15.5. Dataiku
  • 15.6. EdgeVerve Systems Limited
  • 15.7. Big Squid Inc.
  • 15.8. SAS Institute Inc.
  • 15.9. Microsoft Corporation
  • 15.10. Determined.ai Inc.

16. Strategic Recommendations

17. About Us & Disclaimer

Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!