Picture
SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1316276

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1316276

Global Distributed Energy Resources Management System (DERMS) Market - 2023-2030

PUBLISHED:
PAGES: 259 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

Global Distributed Energy Resources Management System (DERMS) Market reached US$ 359.7 million in 2022 and is expected to reach US$ 1,100.0 million by 2030, growing with a CAGR of 15.0% during the forecast period 2023-2030.

The growth in global air travel over the coming years will create new opportunities for the global distributed energy resources management system (DERMS) market. It is crucial to lower airport energy use and to manage costs efficiently which can ensure up to 85% electricity savings. DERMS-based software offers energy analytics & predictions lowers costs & boosts the dependability of the airport power system.

Distributed energy resources management system (DERMS) market in Middle East & Africa is in an early stage; however, with growth in renewable energy, the region is adopting advanced technologies such as DERMS to make energy distribution more efficient. The UAE and Saudi Arabia are expected to lead the market for distributed energy, with Oman set to emerge as the fastest-growing market in the Gulf region.

Market Dynamics

Growth Adoption of Renewable Energy

The growing adoption of renewable energy to mitigate climate change impact has been advantageous for the adoption of DERMS. It is mainly being adopted for solar energy and wind energy projects. Wind power is intermittent; therefore, power management systems such as DERMS are used to match generation and demand. DERMS also considers weather forecasting to predict variance in power generation to ensure a stable energy supply.

With the proliferation of solar energy-based microgrids, companies are deploying distributed energy resources management systems (DERMS) to ensure optimal usage of generated solar power. For instance, in August 2022, Horizon Power announced plans to integrate DERMS technology across its solar-based microgrids in Western Australia.

Grid-connected solar power projects are adopting DERMS to ensure reliability and stability. For example, in August 2022, Generac Grid Services signed an agreement with Dominion Energy, a renewable energy producer based in Virginia, U.S., to integrate its proprietary DERMS technology with the company's grid-connected solar power plants and energy storage systems.

Growing Investment in Smart Grid Technologies

Many countries, regional authorities and global firms are divesting resources and vigorously promoting policies encouraging investment in distributed energy resources (DERs) and smart grid technologies. It is recognized that the infrastructure for producing and delivering power is outdated and needs to be upgraded significantly in order to keep pace with growing global energy demand.

The investments in smart grid technologies are being made to strengthen the grid's dependability and resilience, reduce consumer prices and reduce greenhouse gas emissions and other pollutants. Therefore, it is concluded that the growing environmental and sustainability awareness could be a major market driver for the global distributed energy resources management systems market.

Cybersecurity Concerns

The DERMS utilizes advanced technologies such as the internet of things (IoT), automated control, energy storage and demand management. Data from the systems is gathered for analysis and management. The information is susceptible to hacking attempts and data breaches. The cost of the management systems is increased by the significant investments made in data breach prevention and cyber protection.

Many operators in developing and underdeveloped countries lack adequate cybersecurity measures to protect against vulnerabilities of the DERMS. Furthermore, these countries cannot afford to undertake the high capital expenditures for obtaining and installing necessary protections. It limits the adoption of DERMS by emerging countries and thus constraints global market growth.

COVID-19 Impact Analysis

The supply-chain bottlenecks brought on by the shutdowns due to the pandemic have underlined the need to diversify to lessen reliance on one particular system. Decentralized and controllable DES power generating and storage solutions can offer end users local resilience or complete independence from the grid for their energy demands, with financial benefits. Distributed energy resources management system solutions can strengthen the power supply, especially by using the data produced by DERs.

Further, one of the advantage of the pandemic has been the acceleration of society's adoption of digitization and will have a major impact on distributed energy resource management systems. The growing adoption of digital technologies across various industries will open up new opportunities for the DERMS market in the post-pandemic period.

AI Impact Analysis

The inclusion of artificial intelligence (AI) will enable DERMS to integrate distributed energy resources seamlessly into the existing power grid. By proactively managing the fluctuating supply and demand, AI-integrated DERMS can help to maintain grid stability, mitigate fluctuations and avoid anomalies in the energy transmission networks.

Advanced big data algorithms can be utilized by DERMS operators to analyze consumer behavior patterns and historical data in order to optimize demand response strategies. By incentivizing consumers to adjust their energy consumption during peak demand periods, these algorithms can reduce strain on the grid and prevent blackouts, thus promoting a more reliable and resilient energy system.

Russia-Ukraine War Impact Analysis

Sustained attacks by Russia on Ukraine's energy infrastructure over the course of the war has led to blackouts and energy shortfalls. To preserve the stability and integrity of the remaining grid and to ensure continuation of critical functions, the Ukrainian government has adopted DERMS with financial aid from various western governments.

The adoption of DERMS by various European countries is also likely to increase over the medium term in the wake of the Russia-Ukraine war. In retaliation for the severe economic sanctions imposed on it, Russia cut off gas supplies to Europe, triggering an energy crisis. The adoption of DERMS is meant to enhance grid stability and prevent blackouts.

Segment Analysis

The global distributed energy resources management system (DERMS) market is segmented based on technology, end-user and region.

Falling Costs and Increasing Adoption by Developing Countries is Propelling Growth of Solar PVs

Solar photovoltaics (PVs) account for half of the global market. Solar energy utilization has been increasing in recent years, mainly due to the ongoing global shift toward renewable energy and mitigating the effects of climate change. One of the major factors in the growth of solar PV has been the falling prices of solar cells due to strong supply chains and economies of scale. It has resulted in dropping the price of solar energy production to nearly US$ 0.06-0.08 per kWh in 2022.

Many countries, especially those in the emerging regions of Africa and Asia-Pacific, are constructing major solar energy plants with assistance from global NGOs and developmental organizations. Furthermore, the developed regions of Europe and North America are also constructing solar power plants to decarbonize their energy production.

Geographical Analysis

Growing DERMS Adoption by China will Propel Market Growth in Asia-Pacific

Asia-Pacific accounts for roughly a third of the global market. China has been at the forefront of DERMS adoption. China started its DES research and development quite late compared to developed nations. However, DES, particularly gasfired CCHP systems combined with renewable energy, are rising rapidly in China due to high energy demands and excessive air pollution. Additionally, rising economic expansion has huge market potential in the building and industrial applications.

Furthermore, along with the general public and academics, the Chinese government has recently become considerably more aware of the significance of DES. It anticipates that it will reduce peak power consumption, improve the energy structure and preserve the environment. Moreover, China has released several regulations, rules, relevant laws and criteria to encourage the development of DES to address the rising demand for primary energy. Thus growing government support in boosting DES development has encouraged the key players to build the DES management system, DERMS, to make the overall process easy and efficient.

Competitive Landscape

The major global players include: SIEMENS AG, Schneider Electric, ABB Ltd., General Electric, Spirae, Inc, Generac Grid Services, HITACHI, LTD., MITSUBISHI ELECTRIC CORPORATION, Engie and Yokogawa Electric Corporation.

Why Purchase the Report?

  • To visualize the global distributed energy resources management system (DERMS) market segmentation based on technology, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of distributed energy resources management system market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global distributed energy resources management system (DERMS) market report would provide approximately 50 tables, 51 figures and 259 Pages.

Target Audience 2023

  • Energy Companies
  • Utility Companies
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: EP4095

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Technology
  • 3.2. Snippet by End-User
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Investment in Distributed Energy Resources
      • 4.1.1.2. Growing Environmental and Sustainability Awareness
      • 4.1.1.3. Growth Adoption of Renewable Energy
      • 4.1.1.4. Growing Investment in Smart Grid Technologies
    • 4.1.2. Restraints
      • 4.1.2.1. Stringency of Regulations Related to Distributed Energy Resources
      • 4.1.2.2. Cybersecurity Concerns
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Technology

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 7.1.2. Market Attractiveness Index, By Technology
  • 7.2. Solar PV*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Wind
  • 7.4. Reciprocating Engines
  • 7.5. Fuels Cells
  • 7.6. Gas / Steam Turbines
  • 7.7. Energy Storage
  • 7.8. Others

8. By End-User

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 8.1.2. Market Attractiveness Index, By End-User
  • 8.2. Industrial Manufacturing*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 8.2.3. Aerospace
    • 8.2.4. CPG
    • 8.2.5. Entertainment
    • 8.2.6. Mining
    • 8.2.7. Automotive
    • 8.2.8. Food & Beverage
    • 8.2.9. Life Sciences
    • 8.2.10. High Performance Computing (HPC)
    • 8.2.11. Infrastructure
    • 8.2.12. Marine
    • 8.2.13. Power
    • 8.2.14. Water & Wastewater
    • 8.2.15. Pulp & Paper
    • 8.2.16. Semiconductors
    • 8.2.17. Oil & Gas
    • 8.2.18. Others
  • 8.3. Commercial
  • 8.4. Government
  • 8.5. Municipalities

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. UK
      • 9.3.5.3. France
      • 9.3.5.4. Italy
      • 9.3.5.5. Spain
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. Siemens AG*
    • 11.1.1. Company Overview
    • 11.1.2. Technology Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Recent Developments
  • 11.2. Schneider Electric
  • 11.3. ABB Ltd.
  • 11.4. General Electric
  • 11.5. Spirae, Inc
  • 11.6. Generac Grid Services
  • 11.7. HITACHI, LTD.
  • 11.8. MITSUBISHI ELECTRIC CORPORATION
  • 11.9. Engie
  • 11.10. Yokogawa Electric Corporation

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!