Picture

Questions?

+1-866-353-3335

SEARCH
What are you looking for?
Need help finding what you are looking for? Contact Us
Compare

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1336656

Cover Image

PUBLISHER: DataM Intelligence | PRODUCT CODE: 1336656

Global Solar Powered Irrigation Systems Market - 2023-2030

PUBLISHED:
PAGES: 187 Pages
DELIVERY TIME: 2 business days
SELECT AN OPTION
PDF & Excel (Single User License)
USD 4350
PDF & Excel (Multiple User License)
USD 4850
PDF & Excel (Enterprise License)
USD 7850

Add to Cart

Market Overview

Global Solar Powered Irrigation System Market reached US$ 62.94 billion in 2022 and is expected to reach US$ 112.24 billion by 2030, growing with a CAGR of 8.5% during the forecast period 2023-2030.

Solar-powered irrigation systems harness energy from the sun through photovoltaic panels, converting it into electricity to power water pumps. The above fact enables farmers to irrigate their fields and cultivate crops without relying on grid electricity or expensive fossil fuels. The use of solar energy not only reduces operational costs but also minimizes carbon emissions and dependence on non-renewable energy sources, contributing to a greener and more sustainable agricultural sector. One of the key drivers of the solar-powered irrigation system market is the increasing awareness and adoption of sustainable agricultural practices.

The drip irrigation segment dominates the type segment, experiencing rapid growth and capturing over one-third of the market share. The remarkable growth can be attributed to its exceptional water-saving capabilities, efficient nutrient delivery, and the ability to enhance crop yields significantly. In a similar vein, the Asia-Pacific region holds the largest market share in the solar-powered irrigation system market, accounting for over one-third of the total market share. The Asia-Pacific region exhibits vast potential in the solar-powered irrigation system market, primarily due to the advantages it offers, including cost savings, energy independence, and freedom from reliance on external sources for energy supply.

Market Dynamics

Expansion of Electronics and Semiconductor Industries and Technological Advancements and Innovations

The global solar-powered irrigation system market is driven by a combination of factors that promote sustainable agriculture, harness abundant solar energy resources, reduce energy costs, and mitigate environmental impact. The need for sustainable agricultural practices, availability of abundant solar energy resources, rising energy costs, government support and incentives, and environmental benefits are the major drivers contributing to the market's growth. However, the most prominent driving factor in the market is availability of abundant solar energy resources.

Solar-powered irrigation systems utilize solar panels to generate electricity, making them highly dependent on solar energy resources. The availability of abundant solar energy resources in many regions around the world is a significant driver for market growth. Sunbelt countries, such as those in Africa, Asia, and Latin America, receive ample sunlight throughout the year, making solar-powered irrigation systems a viable and reliable option for farmers in these regions.

For instance, the International Renewable Energy Agency (IRENA) reports that Sub-Saharan Africa has the highest solar irradiation levels globally, making solar-powered irrigation systems particularly suitable for agricultural applications in the region. The abundance of solar energy resources enables farmers to harness clean and renewable energy for irrigation, reducing reliance on grid electricity or fossil fuel-powered generators.

Rising Energy Costs and Volatility as well as Government Support and Incentives

Traditional irrigation methods often rely on grid electricity or fossil fuel-powered generators, which can be expensive and subject to price volatility. The increasing energy costs and price fluctuations associated with conventional energy sources have prompted farmers to seek alternative solutions. Solar-powered irrigation systems offer a stable and predictable energy supply, reducing the vulnerability of farmers to fluctuating energy prices.

According to the International Energy Agency (IEA), solar photovoltaic (PV) electricity costs have experienced a significant decline in recent years. The falling costs of solar PV technology, combined with the long lifespan of solar panels, make solar-powered irrigation systems an economically viable option for farmers.

Government policies and incentives play a crucial role in promoting the adoption of solar-powered irrigation systems. Many governments around the world are implementing favorable regulations and financial support mechanisms to encourage the use of renewable energy in agriculture. These initiatives aim to enhance food security, promote sustainable farming practices, and reduce greenhouse gas emissions. For example, India's Pradhan Mantri Kisan Urja Suraksha evam Utthan Mahabhiyan (PM-KUSUM) program provides subsidies and financial assistance to farmers for the installation of solar-powered irrigation systems.

Lack of Awareness and Technical and Operational Challenges

While the global solar-powered irrigation system market holds significant promise, various restraints hinder its growth and widespread adoption. Limited awareness and knowledge about the benefits and functionality of solar-powered irrigation systems hinder market growth. Many farmers, particularly in rural areas, may not be familiar with the concept of solar-powered irrigation or may have misconceptions about its effectiveness and reliability.

Lack of information dissemination and awareness campaigns impede market penetration and inhibit potential users from considering solar-powered irrigation systems as a viable alternative to traditional methods. Moreover, solar-powered irrigation systems rely on sunlight to generate energy. Consequently, their effectiveness is influenced by weather conditions, such as cloud cover or seasonal variations.

In areas with limited sunlight exposure or regions prone to prolonged periods of cloudy weather, the performance of solar-powered irrigation systems may be compromised. The respective dependency on weather conditions poses a challenge, as it limits the year-round usability and reliability of the systems.

COVID-19 Impact Analysis

Solar powered irrigation system was poised for further expansion, with increasing government initiatives promoting renewable energy adoption in agriculture and rising concerns about water scarcity. According to a report by the International Energy Agency (IEA), the renewable energy sector, including solar power, witnessed a decline in investments in 2020 due to the pandemic. Global solar capacity additions were affected, with delays in project commissioning and reduced installations. The respect fact had a cascading effect on the solar-powered irrigation system market, hindering its growth during the initial phase of the pandemic.

However, the solar-powered irrigation system market also experienced some positive developments amidst challenging circumstances. The pandemic highlighted the importance of resilient and sustainable food production systems. Governments and international organizations recognized the role of solar-powered irrigation systems in promoting sustainable agriculture and enhancing food security, leading to increased support and funding.

Several governments implemented stimulus packages and financial incentives to revive their economies, with a focus on clean energy and sustainable agriculture. For example, the European Union launched the Green Deal and the Recovery and Resilience Facility, aiming to promote renewable energy deployment and sustainable farming practices.

Segment Analysis

The global solar powered irrigation system market is segmented based on type, component, application and region.

Crucial role of oxygen mixtures in healthcare, industrial applications, and aerospace and defense sectors

In recent years, governments worldwide have been promoting sustainable agriculture practices, including the adoption of efficient irrigation systems. For instance, the Indian government's Pradhan Mantri Krishi Sinchayee Yojana (PMKSY) scheme aims to promote water conservation and efficient irrigation practices, including the widespread adoption of drip irrigation systems. Similar initiatives in other countries have also contributed to the growth of the drip irrigation segment. Moreover, several product launches have taken place within the drip irrigation segment of the solar-powered irrigation system market between 2020 and 2023.

Similarly, in 2021, Netafim, a global leader in smart drip and micro-irrigation solutions, launched NetBeat, an advanced digital farming platform. The platform integrates real-time data from sensors installed in the field with artificial intelligence algorithms to optimize irrigation scheduling and water usage in drip irrigation systems, resulting in improved crop yields and water efficiency. Such product launches demonstrate the continuous efforts of industry players to innovate and enhance the performance of drip irrigation systems. By leveraging technology and data-driven approaches, these companies aim to maximize water savings and increase agricultural productivity.

Geographical Analysis

Adoption of Solar Powered Irrigation System, Aiming to Enhance Water Efficiency, Reduce Carbon Emissions, and Promote Sustainable Agriculture Practices

The adoption of solar-powered irrigation systems in the Asia-Pacific region is gaining momentum, driven by supportive government initiatives and the increasing recognition of the benefits they offer. China, India, Australia, and Vietnam have demonstrated significant progress in the adoption of these systems, aiming to enhance water efficiency, reduce carbon emissions, and promote sustainable agriculture practices.

India, another major agricultural country, has also implemented various schemes to promote solar-powered irrigation systems. The government's Pradhan Mantri Kisan Urja Suraksha evam Utthaan Mahabhiyan (PM-KUSUM) scheme provides financial assistance to farmers for the installation of solar pumps.

The Asia-Pacific region represents a significant market for solar-powered irrigation systems. According to government sources, the market for solar-powered irrigation systems in the region is expected to grow at a considerable rate in the coming years. In China, the Ministry of Agriculture and Rural Affairs reported that by the end of 2020, approximately 2.8 million hectares of farmland were equipped with solar-powered irrigation systems. The respective fact accounted for around 13% of the total irrigated farmland in the country. The government aims to further expand the adoption of solar-powered irrigation systems, targeting 6 million hectares by 2022.

Competitive Landscape

The major global players in the market include Connexa, Bonergie, Jain Irrigation Systems Ltd., LORENTZ, Rain Bird Corporation, SunCulture, Wien Energie GmbH, Bright Solar Limited, Netafim and Grundfos Pumps India Private Ltd.

Why Purchase the Report?

  • To visualize the global solar powered irrigation system market segmentation based on type, component, application and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of solar powered irrigation system market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global solar powered irrigation system market report would provide approximately 61 tables, 59 figures and 187 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies
Product Code: EP6641

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Component
  • 3.3. Snippet by Application
  • 3.4. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Environmental Benefits and Carbon Emission Reduction
      • 4.1.1.2. Growing Need for Sustainable Agriculture
    • 4.1.2. Restraints
      • 4.1.2.1. High Initial Investment
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Drip Irrigation*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Sprinkler Irrigation
  • 7.4. Surface Irrigation

8. By Component

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 8.1.2. Market Attractiveness Index, By Component
  • 8.2. Solar Panel*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Pump Controller
  • 8.4. Submersible Water Pump
  • 8.5. Inverter
  • 8.6. Others

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Agricultural irrigation*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Landscaping and gardening
  • 9.4. Others

10. By Region

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 10.1.2. Market Attractiveness Index, By Region
  • 10.2. North America
    • 10.2.1. Introduction
    • 10.2.2. Key Region-Specific Dynamics
    • 10.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.2.6.1. U.S.
      • 10.2.6.2. Canada
      • 10.2.6.3. Mexico
  • 10.3. Europe
    • 10.3.1. Introduction
    • 10.3.2. Key Region-Specific Dynamics
    • 10.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.3.6.1. Germany
      • 10.3.6.2. UK
      • 10.3.6.3. France
      • 10.3.6.4. Italy
      • 10.3.6.5. Russia
      • 10.3.6.6. Rest of Europe
  • 10.4. South America
    • 10.4.1. Introduction
    • 10.4.2. Key Region-Specific Dynamics
    • 10.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.4.6.1. Brazil
      • 10.4.6.2. Argentina
      • 10.4.6.3. Rest of South America
  • 10.5. Asia-Pacific
    • 10.5.1. Introduction
    • 10.5.2. Key Region-Specific Dynamics
    • 10.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 10.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 10.5.6.1. China
      • 10.5.6.2. India
      • 10.5.6.3. Japan
      • 10.5.6.4. Australia
      • 10.5.6.5. Rest of Asia-Pacific
  • 10.6. Middle East and Africa
    • 10.6.1. Introduction
    • 10.6.2. Key Region-Specific Dynamics
    • 10.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 10.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 10.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application

11. Competitive Landscape

  • 11.1. Competitive Scenario
  • 11.2. Market Positioning/Share Analysis
  • 11.3. Mergers and Acquisitions Analysis

12. Company Profiles

  • 12.1. Connexa*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. Bonergie
  • 12.3. Jain Irrigation Systems Ltd.
  • 12.4. LORENTZ
  • 12.5. Rain Bird Corporation
  • 12.6. SunCulture
  • 12.7. Wien Energie GmbH
  • 12.8. Bright Solar Limited
  • 12.9. Netafim
  • 12.10. Grundfos Pumps India Private Ltd.

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us
Have a question?
Picture

Jeroen Van Heghe

Manager - EMEA

+32-2-535-7543

Picture

Christine Sirois

Manager - Americas

+1-860-674-8796

Questions? Please give us a call or visit the contact form.
Hi, how can we help?
Contact us!